

Responsible, Informative, and Secure Computing

Introduction to AI and Fairness in AI-Driven Software

Saeid Tizpaz-Niari

Assistant Professor, Computer Science Department, UT El Paso Email: <u>saeid@utep.edu</u> **13 June, 2023**

Data-Driven Software Solutions

A decision-making process which involves

- collecting data,
- extracting patterns and facts from that data,
- utilizing those patterns and fact to make decisions.
- Explicit Logic Paradigm

- Data-Driven Paradigm

Data-Driven Software Systems

Image Classification as Data-Driven Model

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train an image classifier
- 3. Evaluate the classifier on a withheld set of test images

Challenges in Writing the Explicit Logic of Classification

Images are represented as 3D arrays of numbers,

with integers between [0, 255].

E.g. 300 x 100 x 3

(3 for 3 color channels RGB)

The problem:

semantic gap

Challenge: Viewpoint

Challenge: Deformation

Challenge: Intraclass variation

no obvious way to hard-code the algorithm for recognizing a cat, or other classes

Take dataset, build classifiers, and use the classifier

<pre>def train(train_images</pre>	<pre>, train_labels):</pre>
<pre># build a model for</pre>	images -> labels
return model	
	Model
<pre>def predict(model, tes</pre>	t_images):
<pre># predict test_label</pre>	s using the model
<pre>return test_labels</pre>	
	Accuracy

KNN Classifier

def train(train_images, train_labels):
 # build a model for images -> labels...
 return model

 Model

def predict(model, test_images):
 # predict test_labels using the model...
 return test_labels

 Accuracy

Simply store all of the training data points.

Take the label of a point in the training that is closest to the query.

Example dataset: **CIFAR-10 10** labels **50,000** training images, each image is tiny: 32x32 **10,000** test images.

airplane	-	X	-	X	¥	-	2	18		-
automobile	-				-	No.		A	1-0	*
bird	Non	5	the	R		4	17	N.		W
cat		ES S		50		1	Za	Å.	No.	
deer	153	40	X	R	17	Y	Y	X	-	-
dog	¥.	1.	1	-	1	20	9	13	1	N
frog	2	1	-		? ? ,		P	5		5
horse	Br	-	P	2	67	K 7B	19	to	Gar	Y
ship		Card I	14	-	Lan.	-	Z	12	1	-
truck	A DEL	No.	1					-		1 mil

For every test image (first column), examples of nearest neighbors in rows

What is the similarity? How do you define distance?

Figure 1. Equations of selected distance functions.

What is the similarity? How do you define distance?

test image						training image					pixel-wise absolute value differences					
	56	32	10	18		10	20	24	17		46	12	14	1		
L1-Norm:	90	23	128	133		8	10	89	100		82	13	39	33	150	
	24	26	178	200	-	12	16	178	170	=	12	10	0	30		
	2	0	255	220		4	32	233	112		2	32	22	108		

Code for Nearest Neighbor

<pre>import numpy as np class NearestNeighbor: definit(self): pass</pre>	Nearest Neighbor classifier
<pre>def train(self, X, y): """ X is N x D where each row is an example. Y is 1-dimension of size N """ # the nearest neighbor classifier simply remembers all the training data self.Xtr = X self.ytr = y</pre>	remember the training data
<pre>def predict(self, X): """ X is N x D where each row is an example we wish to predict label for """ num_test = X.shape[0] # lets make sure that the output type matches the input type Ypred = np.zeros(num_test, dtype = self.ytr.dtype) # loop over all test rows</pre>	
<pre>for i in xrange(num_test): # find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min_index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min_index] # predict the label of the nearest example return Ypred</pre>	 for every test image: find nearest train image with L1 distance predict the label of nearest training image

What is one clear problem with this approach? (Hint: Efficiency)

Behavior of K-NN for different value of K

Overfitting Problem: 1-NN vs. 5-NN?

Which distance measure shall we use?

What value for **K** is the best?

Hyperparameter Tuning

- Have a validation subset (why not test dataset?)
- Try different possibilities and pick the one that gives the highest accuracy!
 - Cross-Validation!

DNN Classifier

Training Neural Networks

$$argmin_{(heta)}\left[-rac{1}{N}\sum_{i=0}^{N}\sum_{j=0}^{9}Y_{ij}\mathrm{log}(F_{j})
ight]$$

Training Neural Networks

Inference of Neural Networks

Transformers: Key Algorithm behind ChatGPT

[https://daleonai.com/transformers-explained]

Challenges in AI-Enabled Decision-Support Software

- What are robustness and security concerns?
- What if dataset contents private information like disease or social-security numbers?
- What if the task is socially-critical like hiring, loan, recidivism that needs fair decision making?
- What are the limitation of data-driven software?

Adversarial Example Attacks

Adversarial Example Vulnerability

Adversarial Example Attack

Privacy Issues in Al

Exposure of Secret Information in Training DNN

[The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks, 2019, https://www.usenix.org/system/files/sec19-carlini.pdf]

Differential Privacy Mechanism

For any neighbor datasets X and X' and any output T:

 $\Pr[M(X) \in T] \le e^{\varepsilon} \Pr[M(X') \in T]$

Fairness Issues in Al

Google Sentiment Analysis

Text: i'm a gay black woman Sentiment: -0.30000001192092896

Text: i'm a straight french bro Sentiment: 0.2000000298023224

["Google's sentiment analyzer thinks being gay is bad," Motherboard, Oct 2017]

Google Translator Gender Bias

English Tur	kish Spanish	Detect language	*	\Leftrightarrow	English	Turkish	Spanish	*	Translate			
She is a doctor. × He is a nurse.						O bir doktor. O bir hemşire.						
4) 🎙 🥅	*	1/5000	12 「 4) ペ									
English Turk	kish Spanish	Turkish - detected	*	\Leftrightarrow	English	Turkish	Spanish	•	Translate			
O bir doktor. × O bir hemşire					He is a doctor. She is a nurse 🕏							
(ا)			2	8/5000	☆ □	•) <						

Amazon Same-Day Delivery

https://www.bloomberg.com/graphics/2016-amazon-same-day/

Racial Disparity in IRS Tax Audits

Black Americans Face More Audit Scrutiny, IRS Acknowledges

Black taxpayers were three to five times more likely than taxpayers who are not Black to be audited, research published this year found.

May 15, 2023

https://www.nytimes.com/2023/05/15/us/politics/irs-black-americans-tax-audit.html

E

Predict Risk of Re-offending using COMPAS software

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Data-Driven Parole Decision-Making Software

Fairness Definitions

• Fairness through unawareness:

- Masking protected attributes during training
- Correlation of protected attributes with non-protected ones (e.g., race and zip-code)

• Fairness through Awareness:

- Two individuals with similar qualifications should receive similar outcomes
- $\forall x, y. Qualification(x) \approx Qualification(y) \Rightarrow Pred(x) \approx Pred(y)$
- Measuring qualification is hard.

• Individual Discrimination (Counterfactual):

- Assuming everything else stays the same, changing a protected attribute from A to B should not change outcomes.
- $\forall x, x'. x \equiv_{\{Sex, Race, etc\}} x' \Rightarrow Pred(x) \approx Pred(x')$
- Might be unrealistic and conservative.

	Sex	Race	Prior Counts	Education	
	М	В	1	Diploma	
	М	W	3	Diploma	
)(le)				

Group Fairness

Requires statistics of outcomes for two groups remain similar

• Statistical Parity Difference

٠

- Disparate Impact (80% Rule or Fourth-Fifth Rule)
- Equal Opportunity Difference (EOD): $|TPR^{M}(0) TPR^{M}(1)|$
 - Difference in true positive rates between two groups
 - Average Odd Difference (AOD): $\frac{|TPR^{M}(0) TPR^{M}(1)| + |FPR^{M}(0) FPR^{M}(1)|}{2}$
 - the average of difference in false positive rates and true positive rates between two groups

COMPAS DEMO

Backup Slides

Data-Driven Software Systems

(a) Machine Learning Systems to Infer ML Models

(b) Machine Learning Systems to Infer Decisions

Categories of ML tasks

[1]. Zhang, et al., Machine Learning Testing: Survey, Landscapes and Horizons, 2021