
Worst-Case Convergence Time of ML Algorithms via
Extreme Value Theory

Saeid Tizpaz-Niari

University of Texas at El Paso

El Paso, TX, USA

saeid@utep.edu

Sriram Sankaranarayanan

University of Colorado Boulder

Boulder, CO, USA

srirams@colorado.edu

ABSTRACT
This paper leverages the statistics of extreme values to predict

the worst-case convergence times of machine learning algorithms.

Timing is a critical non-functional property of ML systems, and

providing the worst-case converge times is essential to guarantee

the availability of ML and its services. However, timing properties

such as worst-case convergence times (WCCT) are difficult to verify

since (1) they are not encoded in the syntax or semantics of under-

lying programming languages of AI, (2) their evaluations depend

on both algorithmic implementations and underlying systems, and

(3) their measurements involve uncertainty and noise. Therefore,

prevalent formal methods and statistical models fail to provide rich

information on the amounts and likelihood of WCCT.

Our key observation is that the timing information we seek rep-

resents the extreme tail of execution times. Therefore, extreme

value theory (EVT), a statistical discipline that focuses on under-

standing and predicting the distribution of extreme values in the

tail of outcomes, provides an ideal framework to model and analyze

WCCT in the training and inference phases of ML paradigm. Build-

ing upon the mathematical tools from EVT, we propose a practical

framework to predict the worst-case timing properties of ML. Over

a set of linear ML training algorithms, we show that EVT achieves

a better accuracy for predicting WCCTs than relevant statistical

methods such as the Bayesian factor. On the set of larger machine

learning training algorithms and deep neural network inference,

we show the feasibility and usefulness of EVT models to accurately

predict WCCTs, their expected return periods, and their likelihood.

ACM Reference Format:
Saeid Tizpaz-Niari and Sriram Sankaranarayanan. 2024. Worst-Case Con-

vergence Time of ML Algorithms via Extreme Value Theory. In Confer-
ence on AI Engineering - Software Engineering for AI (CAIN 2024), April
14–15, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3644815.3644989

1 INTRODUCTION
Machine learning (ML) has been significantly integrated into mod-

ern software developments where they are routinely leveraged

to assist in safety-critical decision-making such as autonomous

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CAIN 2024, April 14–15, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0591-5/24/04. . . $15.00

https://doi.org/10.1145/3644815.3644989

cars [26], medical diagnosis [7], malware detection [45], informa-

tion leak [42], and aircraft collision avoidance systems [22]. Re-

cently, neuron-based foundational AI models such as ChatGPT

showed great performance on some of the most challenging pro-

gramming tasks such as synthesizing programs from a high-level

natural language specification and even outperformed domain ex-

perts (e.g., lawyer and physician) in answering questions.

Suchwide adoption ofML techniques comes with concerns about

reliability, accountability, privacy, fairness, greenness, etc. One sub-

stantial concern, especially due to the rapid adaptation of large

language models, is the environmental risks [37] of training ML

models where the computations required for deep neural networks

(DNNs) have been doubling every few months [2]. The software

engineering community considers the timing analysis as a critical

non-functional property and has spent significant efforts to verify,

validate, and analyze the timing properties of software. However,

there are no systematic methods to predict and provide guarantees

on the worst-case computation times of ML-based software sys-

tems to reduce their environmental risks, improve their runtime

performance, and increase their availability. Similar to traditional

software, one challenge is that timing is not encoded as a part of

the syntax or semantics of underlying programming languages.

Furthermore, it is a product of both software and platforms that

execute the software. Modern data-driven software brings new

challenges to the analysis since the computation times significantly

depend on the characteristics of training data, in addition to the

architecture of ML models, their hyperparameters, GPUs, etc.

Due to these challenges in the static verification of timing prop-

erties, one approach is to explore dynamic analysis techniques and

provide statistical guarantees on the estimation of worst-case con-

vergence times (WCCT), i.e., time taken to reach a desirable state

such as a loss value below a threshold during training. Statistical

model checking via hypothesis testing is a common method to

provide such statistical guarantees. In doing so, one might come

up with two hypotheses where the null hypothesis is a predicate

that the execution times are below a threshold and the alternative

hypothesis is the negation of such predicate. Then, they can use

a Bayesian factor testing such as Jeffreys [19] to accept the null

hypothesis with very strong evidence if the experiments witness

𝐾 ≥ 90 sequential true evaluations of the null hypothesis. Simi-

larly, the rule of three [21] can provide 95% confidence intervals

[0, 3/K] on the likelihood of observing a false evaluation given

that we have observed 𝐾 ≥ 30 true evaluations. However, such

hypothesis testing provides limited information and may fail to pro-

vide richer quantitative information about the severity (amounts),

return periods, and likelihood of worst-case convergence times.

https://doi.org/10.1145/3644815.3644989
https://doi.org/10.1145/3644815.3644989
https://doi.org/10.1145/3644815.3644989

CAIN 2024, April 14–15, 2024, Lisbon, Portugal Saeid Tizpaz-Niari and Sriram Sankaranarayanan

In this paper, we propose a method and a tool to provide a

quantitative estimation of worst-case convergence times based on

extreme value theory (EVT) [13]. While statistical theories such

as the central limit theorem focus on the expected quantities of

random variables, they often overlook unusually rare quantities.

The EVT overcomes this problem by focusing on the extremely rare

events and high (low) quantities in the random observations. Prior

works have significantly leveraged EVT to bound the worst-case

execution times of programs in the embedded and real-time systems

where the motivations are the uncertainty of underlying hardware

systems [11, 18, 29]. In addition, EVT has been used to find rare

bugs in circuit design [3, 39]. To the best of our knowledge, this is

the first work to study the feasibility, scalability, and usefulness of

EVT for providing probabilistic bounds on the convergence times

of ML algorithms.

Our key observation is that the worst-case convergence
times (WCCT) of data-driven software over independent
random samples represent the maximum over a set of
random variables. Thus, if valid, EVT can provide useful
information to model and predict the WCCT of ML
algorithms with probabilistic guarantees.

Our experiments include both micro-benchmarks as well as re-

alistic machine learning algorithms. Over a set of linear training

benchmarks, we found that it is feasible to model the worst-case

computation times via EVT, and it significantly improves the ac-

curacy of WCCT predictions as compared to the baseline Bayes

factor [20, 35] in 83% of cases. Given at most 261 samples, the EVT

method is able to predict the actual WCCTs of the next 10,000

queries with more than 75% accuracy (compared to the baseline) in

40% of cases.

Over 4 popular ML training algorithms (logistic regression, deci-

sion trees, Gaussian process, and discriminant analysis), we found

that EVT is scalable and accurately predicts the WCCT of training

in 57% of cases. Over 3 deep neural network models as controllers

for cyber-physical systems, we found that EVT can accurately pre-

dict the WCCT of inference convergences in 75% of cases. Our

observations include: i) EVT might be a more useful tool in the

inference stage compared to the training stage; and ii) EVT extrapo-

lations become more accurate in the longer horizon (e.g., it is more

accurate to predict the WCCT up to 10K queries as compared to

500 queries). In summary, we make the following contributions:

• A feasibility study of applying extreme value theory for

reasoning about the worst-case convergence times of data-

driven applications,

• A quantitative statistical method that measures the severity,

period, and likelihood of extremely rare computation times

for the convergence, and

• A large set of experiments that show the usefulness and

scalability of our approach in adapting EVT for ML training

processes and DNN-based inference.

2 BACKGROUND
Extreme value theory [8] is a statistical branch that deals with the

analysis of extreme events in a random process. Given a set of inde-

pendent and identically distributed random variables {𝑧1, . . . , 𝑧𝑛},

the extreme value theory is concerned with the min/max statis-

tics of a random process, i.e., 𝑀𝑛 = max({𝑧1, . . . , 𝑧𝑛}) or 𝑀𝑛 =

min({𝑧1, . . . , 𝑧𝑛}) as 𝑛 → ∞.

Under some mild assumptions, it has been proved (e.g., see Lead-

better et al. [24]) that 𝑃𝑟 [(𝑀𝑛 − 𝑏𝑛)/𝑎𝑛 < 𝑧] → 𝐺 (𝑧) as 𝑛 → ∞
and 𝐺 belongs to a family of distributions called the generalized
extreme value (GEV) family. Each such distribution has the CDF of

𝐺 (𝑧) = exp

{
−
[
1 + 𝜉

(𝑧 − 𝜇
𝜎

)]−1/𝜉 }
,

defined over {𝑧 : 1 + 𝜉 (𝑧 − 𝜇)/𝜎 > 0}. The model has three parame-

ters: a location parameter −∞ < 𝜇 < +∞, a scale parameter 𝜎 > 0,

and a shape parameter−∞ < 𝜉 < +∞. Type I, known as the Gumbel

family, defines a subset of GEV distribution when 𝜉 → 0. The tail

behavior of type I, 𝑧+, has infinite support, but the density of GEV

decays exponentially (guarantees are feasible up to a bounded). For

type II, 𝜉 > 0 and 𝑧+ have infinite support, decaying polynomially

(limited guarantees are feasible). For a special case where 𝜉 ≥ 1, the

mean of GEV is infinite, decaying logarithmically, so no statistical

guarantee is feasible. Finally, for type III, 𝜉 < 0 and 𝑧+ has finite

support. In this case, the statistical guarantees on the worst-case

outcomes are feasible for a long horizon.

Generalized Pareto Distribution. There are two basic approaches

to infer the parameters of GEV distributions: block maximum and

threshold approach. The block maximum approach divides samples

into blocks of the same size and uses the maximum of each block as

the extreme value. Since such an approach is more appropriate for

seasonal data, in this paper, we use the threshold approach where

extreme events that exceed some high threshold𝑢, i.e., {𝑥𝑖 : 𝑥𝑖 > 𝑢},
are extreme values. Labeling these exceedances by {𝛿 (1) , . . . , 𝛿 (𝑘) },
we define threshold excesses by𝛿 𝑗 = 𝑥 𝑗−𝑢 for 1≤ 𝑗≤𝑘 . It follows that
if 𝑃𝑟 [𝑀𝑛 < 𝑧] → 𝐺 (𝑧), then for large enough 𝑢, the distribution

function of (𝑇 − 𝑢), conditional on 𝑇 > 𝑢, is approximately

𝐻 (𝑡) = 1 −
(
1 + 𝜉𝑡

�̂�

)−1/𝜉
where 𝑡 > 0 and �̂� = 𝜎 + 𝜉 (𝑢 − 𝜇) [8]. This distribution is known as

generalized Pareto distribution. The implication of shape parameter

𝜉 is the same as 𝐺 (𝑧), as a special case of GEV distribution.

Threshold Selection. A proper choice of threshold value 𝑢 is critical

to analyze the behavior of extreme value distributions. Low values

of threshold 𝑢 might include non-tail samples and lead to mixture

distributions that violate the asymptotic basis of the model. On the

other hand, high values of threshold 𝑢 might include only a few tail

samples and lead to low confidence in the model due to high vari-

ance. Therefore, it is critical to be confident on the threshold value

to provide any guarantees on the worst-case fairness behaviors.

Return Levels. It is often convenient to model extreme value distri-

butions using return levels. The inverse of the probability density

function of GEV at probability 𝑝 , is the return level 𝛿𝑝 , associated
with the return period 1/𝑝 . Therefore, the level 𝛿𝑝 is expected to be

exceeded on average once every 1/𝑝 period of time. A return level
is represented with (𝑚,𝛿𝑚) where𝑚 is the time period (e.g., the

number of queries with the ML model) and the level 𝛿𝑚 is the ex-

pected extreme value during the𝑚 period (e.g., expected worst-case

execution times in the next𝑚 queries).

WCCT of ML algorithms via EVT CAIN 2024, April 14–15, 2024, Lisbon, Portugal

3 OVERVIEW
To illustrate the process of extreme value analysis and show the

efficacy of EVT in analyzing the worst-case execution times, we use

a simple example of a mock social network server [4] that applies

different actions on the profile of users. We send requests to apply

different types of photo filters on the images that have different

convergence times.

Test Cases.We randomly generate inputs and collect the compu-

tation times of applying photo filters on the public image of users.

Overall, we collected 4,419 response times.

Characteristics of EVT distribution. Figure 1a shows the com-

putation times where we set the threshold for the extreme response

times to 15.7 seconds to fit the GEV distributions. This threshold

lies on the three standard deviations of the mean execution times

(i.e., it is higher than 99.7% of observed data). We use the maximum

log-likelihood to estimate the parameters of the GEV distribution

using the observed data. The empirical probability density func-

tion against the modeled one is shown in Figure 1b. We infer the

location, scale, and shape of GEV to be 16.3 (+/- 0.1), 0.4 (+/- 0.1),

and 0.0 (+/- 0.1) where the numbers in the parentheses show the

standard errors.

Validity. Since the shape is zero, the type of EVT distribution is I:

the tail is infinite but decays exponentially. Therefore, the extrap-

olations can be valid for extrapolation up to a bounded horizon.

Another way to validate the GEV model is to examine the QQ plots,

a plot of various quantiles of the data (empirical) against the quan-

tiles predicted by the GEV model. Each point in the plot represents

a particular quantile (eg., 5-th percentile) from the data vs. that

predicted by the model. An ideal fit is denoted by a 45
◦
line in the

plot. The QQ-plot is shown in Figure 1c. Based on the plot, we can

ensure the validity of extrapolation up to an extreme computation

time of 16.8 (s).

Usefulness. Figure 1d shows the m-return level of extreme con-

vergence times of the algorithm. For example, the 1000-return level

quantifies the expected extreme execution times (i.e, the expected

all timings that exceed the threshold) that will be observed in the

next 1,000 queries. Since we only have 4,419 response times, to vali-

date the usefulness of the extrapolations, we use the first 419 traces

to infer GEV distributions and compare the prediction of worst-

case convergence times (WCCT) to the actual observed worst-case

WCCT for the next 500, 1000, 2000, and 4000 queries. The GEV-

based extrapolations show the return levels are 16.0 (s) [15.4, 16.7],

16.3 (s) [15.5, 17.0], 16.5 (s) [15.4, 17.7], and 16.9 (s) [15.4, 18.4],

respectively, where the intervals show 95% lower and upper confi-

dence intervals. The actual WCCTs are 16.7, 16.7, 16.8, and 17.2 in

the next 500, 1000, 2000, and 4000 queries that are well within 95%

confidence intervals. Furthermore, we can use GEV distributions

to calculate the likelihood of extreme execution costs in the next

𝑠 steps. The chance of observing extreme response times of 16.8

(s) or more in the next 1, 10, 100, and 1,000 queries are 0.1%, 1.1%,

10.7%, and 77.8%, respectively.

4 PROBABILISTIC WORST-CASE
CONVERGENCE TIME

We study the non-functional behaviors of machine learning soft-

ware and seek to provide statistical guarantees on the worst-case

convergence time. We consider two stages in the machine learning

life cycle: 1) training stage where the ML model is synthesized from

the data and hyperparameters using core ML training algorithms;

and 2) inference stage where the prediction is made for a given

query by the pre-trained ML model.

The Convergence of ML.We define the convergence separately

for training and inference in our setting.

Training Convergence. We can abstractly view a training stage

as the problem of identifying a mapping 𝑀 : X → Y from a

set X of inputs to a set Y of outputs by learning from a fixed

dataset D = {(xi, yi)}𝑁𝑖=1 so that 𝑀 generalizes well to previ-

ously unseen testing data D∗ = {((x∗i), y
∗
i)}

𝑀
𝑖=1

. In doing so, the

training involves configuration parameters—characterizing the set

H of hyperparameters—that let the users define the hypothesis

class for the learning tasks. Given a hyperparameter configuration

ℎ ∈ H , the ML training sift through the given dataset D to learn

an “optimal” value 𝜃 ∈ Θℎ and thus compute the learning model

𝑀 (𝜃 |D, ℎ) : X → Y automatically. In doing so, the training pro-

cess can be seen as an optimization algorithm to minimize a loss

function (e.g., impurity, cross-entropy, hinge). Given a criterion

such as the number of iterations in the DNN or tolerance in the sup-

port vector machines; the convergence of the training algorithm

is to reach a state that satisfies one of the stopping criteria and

returns the model parameter 𝜃 .

Inference Convergence. Let 𝜃∗ ∈ Θℎ be an optimal parameter (i.e.,

a model with the minimum loss) inferred from the training stage.

Let𝑀𝜃 ∗ : X → Y be the corresponding model to infer a prediction

𝑦 ∈ Y for a query 𝑥 ∈ X. The convergence time is the time taken

to derive predictions by the model and reach a desirable goal (e.g.,

for a model that controls a robot; it is the time taken to derive the

robot from its initial state to a final state by predicting the next

action in each step).

Convergence Time. We use a high-level cost model to define the

convergence time. The cost model of a ML𝑀 is the (non-functional)

cost of computations (e.g., running time, memory usages, network

packets, etc). Rather than abstracting costs with notions such as the

number of byte-code executed, we use the actual execution times.

The convergence time is thus the computation cost of reaching to

the convergence state from an initial state during the training or

inference stages.

In our monitoring setting, we observe the queries of ML over

different input values {𝑥1, . . . , 𝑥𝑛} and record the convergence times

{𝑡1, . . . , 𝑡𝑛}. Since we potentially have a large number of samples,

we can compute both the expected values and the standard deviation

of costs and thus, conclude whether the difference of the mean value

from 0 is statistically significant. For example, if a value exceeds

two standard deviations, then this value is statistically significant

in the convergence time with certainty 95%.

From a practical standpoint, it is crucial to ensure that there

are no significant deviations from the mean, but also to model

and reason about the cost of ML training and inference on the

CAIN 2024, April 14–15, 2024, Lisbon, Portugal Saeid Tizpaz-Niari and Sriram Sankaranarayanan

(a) (b) (c) (d)

Figure 1: Overview Example. (a) The computation times of applying photo filters with a threshold of 15.6 seconds. (b) the density plot for GEV
distribution (blue) vs. empirical model (black), (c) quantile Plot for the execution time of the photo algorithm, (d) m-return level plot for the
computation times of the algorithm with expected values and their 95% CI.

worst-case scenarios (i.e., the tail of convergence times) such as the

expected worst-case convergence in the future.

Definition 4.1 (Problem Statement). Given an ML model𝑀
and a set of input traces {𝑥1, . . . , 𝑥𝑛}, our goal is to (1) model the
statistics of worst-case convergence times, i.e., 𝑀𝑛 = max

𝑛
𝑖=1

𝑡𝑖 ; (2)
study the validity of extrapolation to provide probabilistic guarantees
on the worst-case convergence; and (3) quantify the frequency and
significance of extreme convergence time in a long horizon.

We are interested in the maximum value of convergence times,

denoted as𝑀𝑛 , over a large population of 𝑛 samples. Each sample is

a random variable that differs from one sample to another. Since we

assume that the values, corresponding to different samples, do not

depend on each other, the largest value 𝑀𝑛 can be viewed as the

maximum of a large number of independent identically distributed

random variables. Therefore, extreme value theory (EVT) is an ideal

framework to study the corresponding limit distributions and the

convergence to these distributions. We adapt the statistics of EVT

to model, predict, and quantify the worst-case convergence time of

ML algorithms for both training and inference stages.

5 EXPERIMENTS
We first provide details on the implementations. Then, we discuss

the scalability and validity of EVT on a set of classic textbook al-

gorithms implemented in Python and run in a super-computing

machine. Finally, we show the feasibility, scalability, and useful-

ness of EVT on bounding the worst-case convergence times of ML

training and inference.

5.1 Implementation Details and Research
Questions

We monitor the applications on a super-computing machine with

the Linux Red Hat 7 OS and an Intel Haswell 2.5 GHz CPU with

24 cores (each with 128 GB of RAM). In doing so, we simulate

the queries with random test cases generated independently and

uniformly from the domain of variables. For training algorithms,

we generate the input traces using DPFuzz [43], the state-of-the-art

fuzz testing method to characterize the worst-case performance of

ML training algorithms. For deep neural networks, we simulate the

traces using state-of-the-artmethods for the functional properties of

cyber-physical systems [16]. We implemented the EVT algorithms

in R using evd and extRemes libraries [17]. We used mrlplot()

to pick thresholds, fevd() to fit extreme value distribution, and

return.level() to extract return levels.

RQ1 How do GEV-based predictions of WCCT compare to the

baseline statistical testing via Bayes factor on the set of

linear training algorithms?

RQ2 How accurate and useful are GEV-based extrapolations of

WCCT of training popular ML algorithms?

RQ3 How accurate and useful are GEV-based extrapolations for

the inference computation times of DNN models?

RQ1: Accuracy of GEV compared to the Bayes
factor method.
We perform experiments on 10 benchmarks over the linear sup-

port vector machines. We use two classical datasets: census [14]

is a binary classification dataset that predicts whether an individ-

ual has an income over 50𝐾 a year. The dataset has 14 attributes.

Bank Marketing [15] is another classic tabular dataset that predicts

whether an individual, described with 17 features, subscribes to the

term deposit of the bank. We chose the linear model with these

datesets as the baseline ML algorithms to evaluate the efficacy of

GEV, in comparison to the prevalent statistical testing. Specifically,

we consider Jeffreys test [20, 35], a variant of Bayes factor, with a

uniform prior that finds a lower-bound on the number of successive

samples 𝐾 that is sufficient for us to accept a maximum observed

computation time as the WCCT of the training algorithms. The

number of such samples 𝐾 is obtained via:

𝐾 ≥ ⌈(− log
2
𝐵)/(log

2
𝜃)⌉

where 𝐵 in the numerator is Bayes factor and can be set to 100

for a very strong evidence. For instance, to achieve a 𝜃 = 0.95 (a

confidence of 95%), we are required to set 𝐾 ≥ 90 to be highly

confident in accepting the worst-case computation times.

Table 1 shows the performance of GEV extrapolations compared

to the baseline Bayes factor. We use 20%, 40%, 60%, 80%, and 95% of

Census and Bank for 5 different training scenarios per each dataset.

We report observed the average and worst-case convergence times

of training (T), the number of samples to convince the Jeffreys test

with the 95% confidence (b), the prediction based on the test (T𝑏),
the characteristics of GEV distributions inferred using b samples

when the test convinced, the predictions based on GEV distributions

(RL), and the error of GEV prediction as compared to the baseline.

WCCT of ML algorithms via EVT CAIN 2024, April 14–15, 2024, Lisbon, Portugal

Table 1: Convergence Times of Training Linear Support Vector Machine with Prevalent Datasets of Various Sizes. Since the Bayesian factor (BF)
is 95% confidence on the WCCT after observing 𝑏 samples, we only use 𝑏 samples to infer GEV distributions. Legend: #N: Size of Training
Dataset, T: Average of Convergence Time (ms), T𝑛 : Actual Max. Convergence Times Observed after 𝑛 Queries (ms), 𝑏: The number of samples
observed until the Bayes factor (BF) convinced, T𝑏 : Actual Observed WCCT up to the 𝑏-th sample (this is the prediction of Bayes factor),
Parameters: (𝜇, 𝜎, 𝜉) of GEV distribution, 𝜏 : Thresholds of GEV distribution (s), RL𝑛 : GEV-based Prediction of Max. Convergence Times after 𝑛
Queries (ms), Error𝑛 : 𝑅𝐿𝑛−𝑇𝑛

𝑇𝑛−𝑇𝑏 : the percentage of Error of GEV predictions, compared to the baseline Bayes factor (an error of -1.0). Note: 𝐾 = 10
3.

Benchmark Observed Convergence Time BF GEV Characteristics GEV-based Predictions Accuracy

Dataset #N T T1𝐾 T2𝐾 T5𝐾 T10𝐾 𝑏 T𝑏 𝜇 𝜎 𝜉 𝜏 RL1𝐾 RL2𝐾 RL5𝐾 RL10𝐾 Error1𝐾 Error5𝐾 Error10𝐾
Census 6512 169.3 538 538 538 538 148 401 340 18.7 0.0 250 410 431 462 489 -0.93 -0.38 -0.36

Census 13024 323.7 630 712 778 844 261 555 584 17.3 0.0 520 644 666 697 724 +0.19 -0.36 -0.41

Census 19536 480.7 1235 1235 1235 1235 101 1117 956 46.5 0.0 757 1112 1175 1263 1301 -1.05 +0.24 +0.56

Census 26048 681.5 1780 1816 1966 2147 244 1553 1312 47.2 0.1 1010 1671 1830 2082 2311 -0.48 +0.28 +0.27

Census 32235 827.3 1990 2504 2504 2673 140 1670 1673 92.1 0.0 1246 2054 2178 2339 2463 +0.20 -0.20 -0.21

Bank 9042 392.1 636 636 654 654 134 636 492 23.1 0.0 392 553 577 607 632 -9.99 -2.10 -1.20

Bank 18084 477 1249 1249 1283 1357 168 819 962 31.9 0.1 747 1093 1161 1265 1354 -0.36 -0.04 -0.01

Bank 27126 740 2089 2089 2319 2515 94 1276 1453 58.9 0.1 1111 1814 1956 2171 2358 -0.34 -0.14 -0.13

Bank 36168 1069 2822 3703 3703 3772 94 1862 2240 140.1 0.0 1570 2765 2939 3186 3384 -0.06 -0.28 -0.20

Bank 44758 1322 3515 4378 4378 4378 193 3515 3096 220.6 0.0 2066 3931 4212 4612 4935 -9.99 +0.27 +0.65

To measure the prediction error, we compare the GEV prediction

of the 𝑛-th queries (RL𝑛) to the actual WCCT at the 𝑛-th queries

(T𝑛), while factoring the baseline Jeffreys test prediction (T𝑏) as
following:

𝑅𝐿𝑛−𝑇𝑛
𝑇𝑛−𝑇𝑏 . Negative values show that the GEV-based pre-

diction under-estimates the actual WCCT whereas positive val-

ues show that the GEV-based prediction over-estimates the actual

WCCT. The absolute value shows the percentage of error. For ex-

ample, in Table 1 for the Census dataset with 32235 samples, the

GEV used only 140 initial samples and predicted the WCCT in the

next 10,000 queries with an error of 21% (under-estimated). Note

that GEV and Jeffreys have the same error rate when the error

is +1.0 or -1.0 whereas values between -1.0 and +1.0 show GEV

outperformed Jeffreys test and value below -1.0 or above +1.0 show

Jeffreys achieved better results. We truncated any error below -10.0

or above +10.0.

Overall, Table 1 shows that GEV-based predictions have lower

prediction errors compared to the baseline Jeffreys test in 25 cases

out of 30 cases whereas the Jeffreys test is more accurate in 5

cases (cases with errors less than -1.0 such as Bank with 9042 data

samples). Since Jeffreys test accepts the WCCT after at most 261

samples (see the column 𝑏); the GEV prediction used at most 261

samples to extrapolate for the next 1K, 2k, 5k, and 10k queries

(the column 𝑏 shows the number of samples used to derive GEV

parameters). In 22 cases out of 30 cases; GEV prediction under-

estimates the actual WCCT whereas in the remaining 8 cases, it

overestimates the actual WCCT. The errors of GEV predictions are

below 50%, 25%, and 10% in 22, 11, and 3 cases out of 30, compared

to the Jeffreys test.

Answer RQ1:Overall, GEV predicts the worst-case convergence

times more accurately than the baseline Bayes factor method

in 83% of cases. Compared to the baseline, GEV predictions are

more than 50%, 75%, and 90% accurate in 73%, 37%, and 10% of

cases, respectively.

RQ2: GEV predictions of WCCT for ML training
algorithm.
We consider the application of EVT for bounding the worst-case

convergence times in training classical (non-neuron) ML models.

Our goal is to evaluate the feasibility, usefulness, and scalability
of extreme value theory in modeling, quantifying, and bounding

the worst-case convergence times of ML training phase. In doing

so, we consider the training of four mature ML training algorithms

and wish to provide an upper-bound on the convergence time of

training via extreme value theory. For each case study, we discuss

whether such a bound is possible, the frequency of extreme training

convergence time, and the expected return levels.

Rather than using the Jeffreys test [20], we follow the standard

methods in selecting the threshold of extreme value to fit GEV

distributions, according to Coles et al. [8]. The initial threshold

is set to the mean of samples plus two standard deviations and

implies that only 4.56% of data samples are considered as the tail

samples. Since this might not give us a valid GEV (examples of

invalid GEV include a shape of 1.0 or more, negative return levels,

and decreasing return levels as the number of queries increases), we

vary the threshold down to the mean of samples plus one standard

deviation (with a rate of 0.05%). If we could not find any valid GEV,

we return failed. We say a GEV prediction is accurate if it includes

the actual WCCT within its 95% confidence range of prediction.

Logistic Regression. Logistic regression is a popular classifier that
supports various linear and non-linear solvers such as newton and

saga. We study the implementations in scikit-learn library [31].

Test Cases. We used DPFuzz [43] with i.i.d mode and randomly

generate the training dataset via the dataset synthesizer library [32].

Within 4 hours, we generate 16, 568 models with different training

datasets as well as hyperparameters. The computation times of

these training tasks are inputs to the EVT analysis.

Feasibility and Scalability. Figure 2a shows the recorded compu-

tation times as well as the threshold of 10.7 for extreme values.

It takes less than 2 seconds to infer GEV distributions. Figure 2b

shows the empirical vs. modeled probability density functions. The

CAIN 2024, April 14–15, 2024, Lisbon, Portugal Saeid Tizpaz-Niari and Sriram Sankaranarayanan

(a) (b) (c) (d)

Figure 2: Logistic Regression. (a) training convergence times for logistic regression varying input dataset and hyperparameters where the red
line shows 0.997-quantile (99.7% of data is below the red line), (b) the density plot for GEV of Logistic Regression, (c) quantile plot for execution
time of Logistic Regression, (d) m-return level plot for Logistic with expected values and their 95% CI.

location, scale, and shape of GEV are 10.8, 0.49, and 0.9, respectively.

Figure 2c shows the QQ plot.

Usefulness. The return levels are shown in Figure 2d. For 500, 1K,

2K, 5K, and 10K queries, the predicted return levels are 11.0 (s) [10.9,

11.4], 11.4 (s) [10.9, 11.8], 12.6 (s) [11.4, 13.7], 15.9 (s) [11.9, 19.9],

and 20.4 (s) [10.6, 30.2], respectively. The actual observed times are

14.8 (s), 26.8 (s), 26.8 (s), 26.8 (s), and 26.8 (s), respectively, for 500

to 10K queries. While the 95% confidence range predictions do not

include the actual WCCT up to 5K queries; the actual WCCT of 10K

queries are within the range of predicted WCCT. Based on the GEV

distributions, we expected to observe an extreme convergence time

of 11.0 (s) in every 793 queries and the likelihood of observing such

event next is 0.12%.

Decision Tree. The decision tree classifier is a popular white-

box classifier that partitions the space of training data into hyper-

rectangular sub-spaces to learn predicates for each class label. We

analyze its implementations in scikit-learn library [31].

Test Cases. Similar to the previous case studies, we train 9, 348

models within 4 hours, and our goal is to estimate the worst-case

training convergence time via EVT.

Feasibility and Scalability. Figure 3a shows the recorded execution

times of training and the threshold for extreme training computa-

tion times, which is set to 48.7 (s). Figure 3b shows the empirical

vs. modeled probability density functions. The location, scale, and

shape of GEV are 49.1, 0.77, and 0.16, respectively. Figure 2c shows

the QQ plot that is near-linear.

Usefulness. Figure 3d shows the return levels and its 95% confidence

intervals. For 500, 1K, 2K, 5K, and 10K return periods, the return

levels are 50.3 (s) [49.2, 51.7], 51.4 (s) [50.1, 52.8], 53.3 (s) [51.8, 54.7],

54.9 (s) [53.4, 56.4], and 55.8 (s) [54.1, 57.4], respectively. The actual

WCCTs for 500, 1K, 2K, 5K, and 9,348 are 51.4, 51.4, 54.9, 56.9, and

56.9. All the actual WCCTs are within 95% confidence intervals of

GEV-based predictions. Through GEV analysis, we also expect to

observe an extreme training convergence time of 50.3 (s) one in

every 850 queries, and the likelihood of observing such an extreme

training time is 0.1%.

Linear Discriminant Analysis. The goal of LDA is to find a linear

combination of features that maximally separates or discriminates

between different classes. We analyze its implementations in scikit-

learn library [31].

Test Cases. Similar to the previous case studies, we train 3, 900

models within 4 hours, and our goal is to estimate the worst-case

training convergence time via EVT.

Feasibility and Scalability. Figure 4a shows the computation costs

for LDA. We set the threshold for extreme training computation

times to 2.8 (s). The location, scale, and shape of GEV are 2.8, 0.1,

and 0.25, respectively (see Figure 4b). The QQ plot (see Figure 4c)

showed that the validity is up to 3.0 (s).

Usefulness. For 500, 1K, and 2K return periods, the return levels are

2.9 (s) [2.8, 3.0], 2.9 (s) [2.8, 3.0], 3.0 (s) [2.9, 3.1], and 3.1 (s) [2.8, 3.3],

respectively (see Figure 4d). The corresponding WCCTs remain at

3.2 (s) for all these periods. Thus, the actual WCCT of 2K queries is

the only one that resides within the confidence range of predicted

WCCT. Based on the characteristics of EVT, we expect to observe

an extreme convergence time of 2.9 (s) one in every 650 queries,

and the likelihood of observing such an extreme training time is

0.2%.

Gaussian Process. Gaussian process is a Bayesian classifier that

infers posterior over linear classifier parameters using a Gaussian

prior and observed data. We analyze its implementations in scikit-

learn library [31].

Test Cases. Similar to the previous case studies, within 4 hours,

we train 506 models and seek to estimate the worst-case training

convergence time via EVT.

Feasibility and Scalability.We set the threshold for extreme training

computation times to 26.6 (s). The location, scale, and shape of GEV

are 43.0, 1.6, and -0.72, respectively.

Usefulness. For the 500 return period, the return level is 43.6 (s)

[42.0, 45.5]. The actual WCCT of 500 queries is 44.6 (s). We expect to

observe an extreme training to converge of 44.0 (s) one in every 253

queries, and the likelihood of observing such an extreme training

time is 0.4%.

Answer RQ2: We found that GEV is a scalable method to in-

fer the WCCT of ML training algorithms. In all 4 case studies,

GEV predicts the worst-case convergence times accurately in the

longest horizon (i.e., 10K). However, in 2 cases, the GEV predic-

tions were not accurate for a shorter period of time (i.e., for the

next 500, 1K, and 2K queries). Overall, GEV predicts the WCCT

accurately in 57% of cases.

WCCT of ML algorithms via EVT CAIN 2024, April 14–15, 2024, Lisbon, Portugal

(a) (b) (c) (d)

Figure 3: Decision Tree. (a) the computation times of training Decision Tree varying input dataset and hyperparameters with a threshold sets to
48.7 (s), (b) the density plot for GEV of Decision Tree, (c) quantile Plot for execution time of Decision Tree, (d) m-return level plot for Decision
Tree with expected values and their 95% CI.

(a) (b) (c) (d)

Figure 4: Linear Discriminant Analysis. (a) the computation times of training Linear Discriminant Analysis varying input dataset and
hyperparameters with a threshold set to 2.8 (s), (b) the density plot for GEV of Linear Discriminant, (c) quantile Plot for the execution time of
Linear Discriminant, (d) m-return level plot for Linear Discriminant with expected values and their 95% CI.

RQ3: GEV predictions of WCCT for DNN
Inference.
Our next goal is to evaluate the convergence times based on the

inference of deep neural networks. We are given a set of pre-trained

deep neural networks with ReLU units that control different cyber-

physical systems (CPS). We used CPS rather than image classifi-

cations (MNIST, CIFAR, etc.) since in CPS applications, multiple

DNN-based inferences are required to infer a decision while DNN-

based image classifications are often one-step fast process.

In each of the benchmarks below, we have a deep neural network

that takes the state of a system as the input and infers the next

control value to move toward an equilibrium state. We measure the

convergence time of DNN to stabilize the system. In doing so, our

goal is to model and analyze the extreme convergence times: the

worst-case time taken by the DNN controller to enter a small set

containing the stable state, starting from a randomly chosen initial

state.

Similar to the convergence of training algorithms, we set the

threshold of extreme values to the range from the mean of observed

execution times plus one standard deviation to the mean plus two

standard deviations. We measure the accuracy by comparing the

actual convergence times to the GEV-based prediction.

Ball and Beam: Figure 5 (a) shows the setup for a ball-and-beam

system with a beam whose tilt can be controlled by a motor and a

ball which is to be brought to rest at the center of the beam. The

CPS system has 6 variables: 𝑥 denotes the displacement of the ball

from the center of the beam; 𝑣 shows the velocity; 𝜃 is the angle of

the beam;𝜔 denotes the angular velocity of the beam;𝑢 denotes the

torque delivered by the motor; and 𝑑 denotes a random disturbance

force chosen uniformly at random from the range [−0.05, 0.05] ev-
ery 0.1 seconds. Given (𝑥, 𝑣, 𝜃, 𝜔) as the inputs, the control variable
𝑢 is inferred by a ReLU neural network with 5 hidden layers and

106 neurons in total. The differential equation model for (𝑥, 𝑣, 𝜃, 𝜔),
the DNNmodel, and the synthesis methodology of “region stability”

are discussed in [16].

Test Case. We simulate the DNN controller and generate 10,000

random test cases. These are i.i.d. random initial states drawn from

the range: 𝑥 ∈ [−1, 1], 𝑣 ∈ [−1, 1], 𝜃 ∈ [−0.2, 0.2], 𝜔 ∈ [−0.1, 0.1]
and disturbance input as described above. Our goal is to measure

how long the system takes to settle and remain inside the region

(𝑥, 𝑣, 𝜃, 𝜔) ∈ [−0.05, 0.05]4. The total time taken for 10,000 simula-

tions is 11 mins 33 seconds (each run simulates the system for 30

time units with a time step of 0.02 time units).

Feasibility and Scalability. Figure 6a shows the recorded settling

times as well as the threshold of 17.5 for extreme values. It takes 2

seconds to infer GEV distributions. Figure 6b shows the empirical

vs. modeled probability density functions. The location, scale, and

shape of GEV are 17.1, 0.5, and 0.0, respectively. The shape shows

that GEV is type I, and the density of tail distribution is infinite,

but decaying exponentially. Figure 6c shows the QQ plot which is

used to find the bounds on the extrapolations.

Usefulness. Figure 6d shows the return levels and their 95% confi-

dence intervals. For 1K, 2K, 5K, and 10K return periods, the return

CAIN 2024, April 14–15, 2024, Lisbon, Portugal Saeid Tizpaz-Niari and Sriram Sankaranarayanan

(a) Ball and Beam (b) Inverted Pendulum (c) Tora

Figure 5: Schematic diagrams for the neural-network controlled physical systems.

levels are 17.4 (s) [17.1, 17.7], 17.8 (s) [17.5, 18.2], 18.3 (s) [17.7,

18.8], and 18.6 [17.9, 19.3], respectively. The actual WCCTs are 17.8,

17.8, 19.3, and 19.3, for 1K, 2K, 5K, and 10K simulations. Those,

predictions for 2K and 10K simulations are predicted accurately.

The expected likelihood of observing the settling times above 17.4

(s) and 17.8 (s) after 100th queries are 10.4% and 6.0%, respectively.

Inverted PendulumWe consider the control of an inverted pendu-

lum on a cart (see Figure 5 (b)) using a neural networked controlled

system. The key idea is to stabilize an inverted pendulum by mov-

ing the cart back and forth so that the entire system comes to rest

with the pendulum pointing directly upwards. This is a very com-

monly studied control problem with numerous applications such

as segway scooters. We consider a reduced nonlinear model with

two state-variables: 𝜃 denoting the angle of the pendulum wherein

0 radians denote an upright pendulum and 𝜔 denotes the angular

velocity.

¤𝜃 = 𝜔, ¤𝜔 = sin(𝜃) − (𝑢 + 𝑑) cos(𝜃) .

Here 𝑢 is the control input and 𝑑 is a random disturbance chosen

every 0.1 seconds uniformly from the range [−0.1, 0.1]. Starting
from initial conditions (𝜃, 𝜔) ∈ [−1, 1]2, we are interested in the

time taken by a neural network controller to settle and remain in

the range [−0.05, 0.05]2. The neural network controller has two

hidden layers with a total of 20 neurons.

Test Case. We interact with DNN controller and generate 10,000

random test cases with initial states and disturbance inputs drawn

uniformly from the ranges described above. The total time taken for

10,000 simulations is 2 minutes and 35 seconds (each run simulates

the system for 30 time units with a time step of 0.02 time units).

Feasibility and Scalability. Figure 7a shows the recorded settling

times as well as the threshold of 2.9 for extreme values. It takes 2

seconds to infer GEV distributions. Figure 7b shows the empirical

vs. modeled probability density functions. The location, scale, and

shape of GEV are 2.9, 0.1, and 0.0, respectively. The shape shows

that GEV is type I, and the density of tail distribution is infinite, but

decaying exponentially. Figure 7c shows the QQ plot which might

be valid up to 3.3 (s).

Usefulness. Figure 7d shows the return level plots and its 95% confi-

dence intervals. For 1K, 2K, 5K, and 10K return periods, the return

levels are 3.0 (s) [2.9, 3.1], 3.1 (s) [3.0, 3.2], 3.2 (s) [3.1, 3.4], and 3.3

(s) [3.1 3.5], respectively. The actual WCCTs are 3.0 (s), 3.0 (s), 3.3

(s), and 3.4 (s) for 1K, 2K, 5K, and 10K simulations, respectively. The

predictions include the actual WCCT for all the simulation queries.

The expected likelihood of observing the computation times above

3.0 (s) after 100th queries is 12.2%.

Tora: Figure 5 (c) shows the TORA (Translational Oscillator with

Rotational Actuator), a widely studied nonlinear control model [34].

Its simplified model involves 4 state variables (𝑥1, . . . , 𝑥4) whose
dynamics are given by:

¤𝑥0 = 𝑥1, ¤𝑥1 = −𝑥0 + 0.1 sin(𝑥2) + 𝑑, ¤𝑥2 = 𝑥3, ¤𝑥3 = 𝑢 .

The initial states are drawn from ranges (𝑥1, 𝑥2) ∈ [−1, 1]2 and

(𝑥3, 𝑥4) ∈ [−0.5, 0.5]2 with the disturbance inputs𝑑 drawn from the

range [−0.01, 0.01]. The settling region is taken to be [−0.1, 0.1]4.
The neural network has a single hidden layer with just one neuron.

Test Case. We perform 10, 000 random simulations of the system,

requiring a total of 40 minutes and 50 seconds (each run simulates

the system for 300 time units with a time step of 0.02 time units).

Feasibility and Scalability. Figure 8a shows the recorded computa-

tion times as well as the threshold of 105.1 for extreme values. It

takes 2 seconds to infer GEV distributions. Figure 8b shows the

empirical vs. modeled probability density functions. The location,

scale, and shape of GEV are 110.2, 1.5, and 0.0, respectively. The

shape shows that GEV is type I and the density of tail distribution

is finite. Figure 8c shows the QQ plot.

Usefulness. Figure 8d shows the return levels and their 95% confi-

dence intervals. For 1K, 2K, 5K, and 10K return periods, the return

level is 111.6 (s) [110.8, 113.3], 112.4 (s) [111.5, 113.3], 113.3 (s) [112.1,

114.5], and 113.9 [112.5, 115.3], respectively. The actualWCCTs have

remained 113.5 (s). Therefore, the predictions up to 5K and 10K

simulations are accurate. The expected likelihood to observe the

computation times above 111.3 (s) after 100th interaction is 8.4%.

Answer RQ3: We found that GEV is a feasible and scalable

method to infer the WCCT of DNN inferences for cyber-physical

systems. In all 3 case studies, GEV predicts the worst-case con-

vergence times accurately in the longest horizon (i.e., 5K and

10K), similar to the case studies for the ML training algorithm.

Consider all 12 predictions, we observe that GEV predictions are

accurate for 9 cases, with an overall accuracy of 75%.

WCCT of ML algorithms via EVT CAIN 2024, April 14–15, 2024, Lisbon, Portugal

(a) (b) (c) (d)

Figure 6: Ball-beam. (a) the converge times of Ball-Beam on the randomly generated inputs, (b) quantile Plot for the execution time of Ball-Beam,
(c) the density plot for GEV of Ball-Beam, (d) m-return level plot for Ball-Beam with expected values and their 95% CI.

(a) (b) (c) (d)

Figure 7: Inverted Pendulum. (a) the converge times of Pendulum on the randomly generated inputs, (b) quantile Plot for the execution time of
Pendulum, (c) the density plot for GEV of Pendulum, (d) m-return level plot for Pendulum with expected values and their 95% CI.

(a) (b) (c) (d)

Figure 8: Tora. (a) the converge times of Tora on the randomly generated inputs, (b) quantile Plot for the execution time of Tora, (c) the density
plot for GEV of Tora, (d) m-return level plot for Tora with expected values and their 95% CI.

6 DISCUSSIONS
EVT only considers the external manifestations of a system and

does not provide information on how the input observations are

made. To ensure the theory applies, it is necessary to understand the

execution conditions that programs may experience at deployment

time and control the execution conditions during analysis time to

ensure they are representative. In addition, EVT does not guarantee

the representativeness of the data, which depends on the quality of

test cases and the state of the environment. The WCCT estimates

obtained with EVT are only valid for the data population sampled

or the observed operating conditions. If representativeness is low,

the WCCT bounds may not be a reliable prediction.

Internal Validity. The EVT applies when the observations are inde-

pendent and identically distributed. While leveraging DPFuzz, we

mitigate the dependency between inputs by randomizing observa-

tions and controlling the size of inputs. In addition, the threshold

of EVT should be chosen judiciously, otherwise the GEV distribu-

tions might include non-tail samples (mixture distributions) or a

few tail samples that cast doubts on the confidence. While we used

the characteristics and confidence of EVT to choose a threshold;

more research is needed to find principles for picking the threshold

values for the WCCT analysis of ML-based software to achieve a

higher accuracy/precision in the analysis. Moreover, the number of

samples to fit into the EVT engine is also important for a precise

analysis. While we used the Bayes factor to decide on the number

of samples for EVT analysis, it requires further research.

External Validity. To ensure that the results are generalizable, we
consider multiple case studies for both training and inference of

ML algorithms. While we consider deep neural networks, we only

CAIN 2024, April 14–15, 2024, Lisbon, Portugal Saeid Tizpaz-Niari and Sriram Sankaranarayanan

consider the pre-trained DNNs as CPS controllers. We left studying

the worst-case convergence of training DNNs for future work.

7 RELATEDWORK
Extreme Value Theory for Probabilistic WCET. Extreme value

theory has been significantly adapted to provide probabilistic guar-

antees on the worst-case execution times in the real-time and em-

bedded systems [11, 18, 29]. Lima et al. [28] studied the applicabil-

ity of extreme value theory for estimating worst-case execution

times in an embedded platform equipped with a random cache of

configurable sizes. Similar to us, they found that the worst-case

execution times can be modeled as one of the three extreme value

distributions (Weibull, Gumbel or Frechet), and thus restricting the

analysis to one distribution can lead to poor or even unsafe WCET

estimates. They extensively studied the effects of cache over the

timing observations of embedded systems, while we focused on

varying the inputs to the training process and inference models

of machine learning software. Santinelli et al. [36] studied the im-

pacts of relaxing i.i.d. assumptions in the EVT modeling of WCET.

They offered various tests to understand whether samples are inde-

pendent and identical. They show the limitations of EVT in such

cases and propose techniques such as bootstrapping to convey

independence. Lima and Bate [27] tackle the inherent problems

of time measurements over modern hardware for the EVT analy-

sis. They proposed indirect estimation in statistical time analysis

(IESTA), which is based on randomizing the data to untangle the

dependency on the hardware. The effectiveness of IESTA is demon-

strated through experiments on two real case studies involving

execution time measurements from an embedded platform and a

Rolls-Royce Full Authority Digital Engine Controller. Cazorla et

al. [5] presents a framework to discuss the limitation of EVT in

computing upper bounds on the execution time of programs. Specif-

ically, they consider the problem of sufficiency of observational

data to infer extreme value distributions. Their recommendations

include controlling the execution conditions at analysis time and un-

derstanding the representativeness of the analysis-time execution

conditions with respect to those that may occur during operation.

They identify various sources of variability of execution times and

propose a framework to sample inputs randomly while ensuring

representative maxima samples from those sources of variability.

Since identifying all of the sources of variability in our applications

is hard, we are required to develop new techniques to understand

the representativeness of data. Overall, all previous work focused

on real-time and embedded systems, while we measured the con-

vergence time of ML algorithms.

Extreme Value Theory for Detecting Rare Bugs in Circuit
Design. Statistical blockage [39] used EVT to block unwanted rare

events to improve circuit reliability. In particular, the authors found

standard MCMC techniques such as importance sampling are inef-

ficient in modeling unlikely rare events. Instead, they used MCMC

sampling to infer the parameters of EVT distributions. Antoniadis

et al. [3] adapted EVT to estimate the worst-case delay of VLSI cir-

cuits under variations in gate/interconnect parameters. Cooley et

al. [10] used the generalized Pareto distribution to predict flooding

based on daily precipitations above a high threshold. A similar anal-

ysis has proposed to study how a slowly changing climate would

possibly lead to more frequent extreme events [9]. EVT tools have

been also used to answer hypothetical questions about physical

endurance [1]. We refer interested readers to classic EVT books to

see other examples and applications [8, 12, 13].

Characterization of WCET through program analysis. At
a high-level, there are two major approaches to estimating the

worst-case execution times in software: static analysis and dynamic

analysis. Here, we discuss these techniques as well as those that

combine these two techniques.

Static Analysis. SAFER [6] combines taint analysis with control

dependency analysis to identify high-complexity control structures

whose execution can lead to resource exhaustion such as CPU

clocks and stack space. While these techniques can detect infinite

executions, they rely on expensive taint analysis that might not

be feasible for some real-world applications (e.g., Java programs)

with dynamic features such as reflections [23]. In addition, SAFER

only detects DoS vulnerabilities, not super-linear computational

complexities.

Dynamic Analysis. Search-based software testing has been signifi-

cantly used to model the execution times [25, 30, 33, 40, 41, 43]. For

example, PerfFuzz [25] adapts evolutionary algorithms to maxi-

mize the cost of different entities in the control-flow graph (such

as the number of times to take an edge) that lead to precise charac-

terization of WCET in large-scale systems. These techniques often

discover a single input that characterizes WCET whereas EVT tech-

niques provide rich statistical information such as the expected

worst-case execution times, the return levels of WCET, and their

likelihood. We adapted DPFuzz [44], a similar ML-oriented fuzz

testing, to generate test cases.

Hybrid Analysis.GameTime [38] combines basis path analysis through

SMT solvers with random suite test generations to predict various

timing properties of software including WCET. In particular, they

use CFG paths with total execution times to infer the computation

times of each element in the CFG.

8 CONCLUSION AND FUTUREWORK
Timing analysis is a crucial non-functional property of ML-based

software systems but poses significant challenges to traditional

static and dynamic program analysis methods. We proposed a tool

and a technique based on the statistics of extreme value theory

to model the worst-case convergence time of ML algorithms. Our

experiments showed that EVT-based WCCT analysis is feasible,

scalable, and accurate for the timing analysis of ML algorithms.

Our observations include that i) EVT becomes more accurate in

the longer horizon than the shorter period of time and ii) EVT was

more accurate in predicting the DNN inference than predicting the

ML training convergence times. There are also multiple other excit-

ing future directions. One direction is to infer classifiers from the

characteristics of inputs (and their features) that might manifest the

worst-case convergence times as a filtering mechanism, especially

for ML-as-service frameworks. Another direction is to incorporate

EVT to validate the efficacy of repair (mitigation) applied to fix a

performance bug or improve efficiency.

Acknowledgement. The authors thank the anonymous CAIN

reviewers for their comments to improve this paper. Tizpaz-Niari

partially supported by the NSF under grants CNS-2230060.

WCCT of ML algorithms via EVT CAIN 2024, April 14–15, 2024, Lisbon, Portugal

REFERENCES
[1] Ahmed, H.: Extreme value theory in a nutshell with various applications

(2021), https://towardsdatascience.com/extreme-value-theory-in-a-nutshell-

with-various-applications-3260b6a84316

[2] Amodei, D., Hernandez., D.: Ai and compute (2018), https://openai.com/research/

ai-and-compute

[3] Antoniadis, C., Garyfallou, D., Evmorfopoulos, N., Stamoulis, G.: Evt-based

worst case delay estimation under process variation. In: 2018 Design, Au-

tomation Test in Europe Conference Exhibition (DATE). pp. 1333–1338 (2018).

https://doi.org/10.23919/DATE.2018.8342220

[4] Apogee-Research: Snapbuddy application (2016), https://github.com/Apogee-

Research/STAC/tree/master/Engagement_Challenges/Engagement_2/

snapbuddy_1

[5] Cazorla, F.J., Vardanega, T., Quiñones, E., Abella, J.: Upper-bounding program

execution time with extreme value theory. In: 13th International Workshop on

Worst-Case Execution Time Analysis. Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik (2013)

[6] Chang, R., Jiang, G., Ivancic, F., Sankaranarayanan, S., Shmatikov, V.: Inputs of

coma: Static detection of denial-of-service vulnerabilities. In: Computer Security

Foundations (CSF). pp. 186–199. IEEE Press (2009)

[7] Ciresan, D., Giusti, A., Gambardella, L., Schmidhuber, J.: Deep neural networks

segment neuronal membranes in electron microscopy images. Advances in neural

information processing systems 25 (2012)

[8] Coles, S., Bawa, J., Trenner, L., Dorazio, P.: An introduction to statistical modeling

of extreme values, vol. 208. Springer (2001)

[9] Cooley, D.: Extreme value analysis and the study of climate change. Climatic

change 97(1), 77–83 (2009)
[10] Cooley, D., Nychka, D., Naveau, P.: Bayesian spatial modeling of extreme precip-

itation return levels. Journal of the American Statistical Association 102(479),
824–840 (2007). https://doi.org/10.1198/016214506000000780, https://doi.org/10.

1198/016214506000000780

[11] Cucu-Grosjean, L., Santinelli, L., Houston, M., Lo, C., Vardanega, T., Kosmidis, L.,

Abella, J., Mezzetti, E., Quinones, E., Cazorla, F.J.: Measurement-based probabilis-

tic timing analysis for multi-path programs. In: 2012 24th euromicro conference

on real-time systems. pp. 91–101. IEEE (2012)

[12] Davison, A.C.: Modelling Excesses over High Thresholds, with an Application,

pp. 461–482. Springer Netherlands, Dordrecht (1984)

[13] De Haan, L., Ferreira, A., Ferreira, A.: Extreme value theory: an introduction,

vol. 21. Springer (2006)

[14] Dua, D., Graff, C.: UCI machine learning repository (2017), https://archive.ics.uci.

edu/ml/datasets/census+income

[15] Dua, D., Graff, C.: UCI machine learning repository (2017), https://archive.ics.uci.

edu/ml/datasets/bank+marketing

[16] Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Learning and verification of

feedback control systems using feedforward neural networks. In: IFAC Confer-

ence on Analysis and Design of Hybrid Systems (ADHS). vol. 51, pp. 151–156.

IFAC-PapersOnline (2018)

[17] Gilleland, E., Ribatet, M., Stephenson, A.G.: A software review for extreme value

analysis. Extremes 16(1), 103–119 (2013)
[18] Hansen, J., Hissam, S., Moreno, G.A.: Statistical-based wcet estimation and val-

idation. In: 9th international workshop on worst-case execution time analysis

(WCET’09). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2009)

[19] Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A bayesian

approach to model checking biological systems. In: Degano, P., Gorrieri, R. (eds.)

Computational Methods in Systems Biology. pp. 218–234. Springer Berlin Hei-

delberg, Berlin, Heidelberg (2009)

[20] Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A bayesian

approach to model checking biological systems. In: CMSB. pp. 218–234. Springer

(2009)

[21] Jovanovic, B.D., Levy, P.S.: A look at the rule of three. The American Statistician

51(2), 137–139 (1997)
[22] Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy compres-

sion for aircraft collision avoidance systems. In: 2016 IEEE/AIAA 35th Digital

Avionics Systems Conference (DASC). pp. 1–10. IEEE (2016)

[23] Landman, D., Serebrenik, A., Vinju, J.J.: Challenges for static analysis of java

reflection-literature review and empirical study. In: 2017 IEEE/ACM 39th Inter-

national Conference on Software Engineering (ICSE). pp. 507–518. IEEE (2017)

[24] Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and related properties of

random sequences and processes. Springer Science & Business Media (2012)

[25] Lemieux, C., Padhye, R., Sen, K., Song, D.: Perffuzz: Automatically generating

pathological inputs. In: Proceedings of the 27th ACM SIGSOFT International

Symposium on Software Testing and Analysis. pp. 254–265 (2018)

[26] Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J.Z.,

Langer, D., Pink, O., Pratt, V., et al.: Towards fully autonomous driving: Systems

and algorithms. In: 2011 IEEE intelligent vehicles symposium (IV). pp. 163–168.

IEEE (2011)

[27] Lima, G., Bate, I.: Valid application of evt in timing analysis by randomising exe-

cution time measurements. In: 2017 IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS). pp. 187–198. IEEE (2017)

[28] Lima, G., Dias, D., Barros, E.: Extreme value theory for estimating task execution

time bounds: A careful look. In: 2016 28th Euromicro Conference on Real-Time

Systems (ECRTS). pp. 200–211 (2016). https://doi.org/10.1109/ECRTS.2016.20

[29] Lu, Y., Nolte, T., Bate, I., Cucu-Grosjean, L.: A new way about using statistical

analysis of worst-case execution times. ACM SIGBED Review 8(3), 11–14 (2011)
[30] Noller, Y., Tizpaz-Niari, S.: Qfuzz: Quantitative fuzzing for side channels. In:

Proceedings of the 30th ACM SIGSOFT International Symposium on Software

Testing and Analysis. pp. 257–269 (2021)

[31] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)
[32] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Make multilabel classifi-

cation in scikit-learn. https://scikit-learn.org/stable/modules/generated/sklearn.

datasets.make_multilabel_classification.html (2022)

[33] Petsios, T., Zhao, J., Keromytis, A.D., Jana, S.: Slowfuzz: Automated domain-

independent detection of algorithmic complexity vulnerabilities. In: Proceedings

of the 2017 ACMSIGSACConference on Computer and Communications Security.

pp. 2155–2168. CCS’17 (2017)

[34] Robert, T.B., Bernstein, D.S., Coppola, V.T.: A benchmark problem for nonlinear

control design. International Journal of Robust and Nonlinear Control 8, 307–310
(1998)

[35] Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic

programs: inferring whole program properties from finitely many paths. In: PLDI.

pp. 447–458 (2013)

[36] Santinelli, L., Morio, J., Dufour, G., Jacquemart, D.: On the sustainability of the

extreme value theory for wcet estimation. In: 14th International Workshop on

Worst-Case Execution Time Analysis. Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik (2014)

[37] Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green ai. Communications of

the ACM 63(12), 54–63 (2020)
[38] Seshia, S.A., Kotker, J.: Gametime: A toolkit for timing analysis of software. In:

International Conference on Tools and Algorithms for the Construction and

Analysis of Systems. pp. 388–392. Springer (2011)

[39] Singhee, A., Rutenbar, R.A.: Statistical blockade: a novel method for very fast

monte carlo simulation of rare circuit events, and its application. In: 2007 Design,

Automation & Test in Europe Conference & Exhibition. pp. 1–6. IEEE (2007)

[40] Tizpaz-Niari, S., Černỳ, P., Chang, B.Y.E., Sankaranarayanan, S., Trivedi, A.:

Discriminating traces with time. In: Tools and Algorithms for the Construction

and Analysis of Systems: 23rd International Conference, TACAS 2017. pp. 21–37.

Springer (2017)

[41] Tizpaz-Niari, S., Cerny, P., Chang, B.Y.E., Trivedi, A.: Differential performance

debugging with discriminant regression trees. Proceedings of the AAAI Confer-

ence on Artificial Intelligence 32 (2018). https://doi.org/10.1609/aaai.v32i1.11875,

https://ojs.aaai.org/index.php/AAAI/article/view/11875

[42] Tizpaz-Niari, S., Černỳ, P., Sankaranarayanan, S., Trivedi, A.: Efficient detection

and quantification of timing leaks with neural networks. In: Runtime Verification:

19th International Conference, RV 2019, Porto, Portugal, October 8–11, 2019,

Proceedings 19. pp. 329–348. Springer (2019)

[43] Tizpaz-Niari, S., Černỳ, P., Trivedi, A.: Detecting and understanding real-world

differential performance bugs in machine learning libraries. In: Proceedings of the

29th ACM SIGSOFT International Symposium on Software Testing and Analysis.

pp. 189–199. ISSTA’20 (2020)

[44] Tizpaz-Niari, S., Černý, P., Trivedi, A.: Dpfuzz: Fuzzing and debugging for differ-

ential performance bugs in machine learning libraries (2020), https://doi.org/10.

1145/3406882

[45] Yuan, Z., Lu, Y., Wang, Z., Xue, Y.: Droid-sec: deep learning in android malware

detection. In: Proceedings of the 2014 ACM conference on SIGCOMM. pp. 371–

372 (2014)

https://towardsdatascience.com/extreme-value-theory-in-a-nutshell-with-various-applications-3260b6a84316
https://towardsdatascience.com/extreme-value-theory-in-a-nutshell-with-various-applications-3260b6a84316
https://openai.com/research/ai-and-compute
https://openai.com/research/ai-and-compute
https://github.com/Apogee-Research/STAC/tree/master/Engagement_Challenges/Engagement_2/snapbuddy_1
https://github.com/Apogee-Research/STAC/tree/master/Engagement_Challenges/Engagement_2/snapbuddy_1
https://github.com/Apogee-Research/STAC/tree/master/Engagement_Challenges/Engagement_2/snapbuddy_1
https://doi.org/10.1198/016214506000000780
https://doi.org/10.1198/016214506000000780
https://archive.ics.uci.edu/ml/datasets/census+income
https://archive.ics.uci.edu/ml/datasets/census+income
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_multilabel_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_multilabel_classification.html
https://ojs.aaai.org/index.php/AAAI/article/view/11875
https://doi.org/10.1145/3406882
https://doi.org/10.1145/3406882

	Abstract
	1 Introduction
	2 Background
	3 Overview
	4 Probabilistic Worst-Case Convergence Time
	5 Experiments
	5.1 Implementation Details and Research Questions

	6 Discussions
	7 Related Work
	8 Conclusion and Future Work
	References

