
Information-Theoretic Testing and Debugging of
Fairness Defects in Deep Neural Networks

Verya Monjezi
vmonjezi@miners.utep.edu

University of Texas at El Paso

Gang Tan
gtan@psu.edu

Pennsylvania State University

Ashutosh Trivedi
ashutosh.trivedi@colorado.edu

University of Colorado Boulder

Saeid Tizpaz-Niari
saeid@utep.edu

University of Texas at El Paso

Abstract—The deep feedforward neural networks (DNNs) are
increasingly deployed in socioeconomic critical decision support
software systems. DNNs are exceptionally good at finding min-
imal, sufficient statistical patterns within their training data.
Consequently, DNNs may learn to encode decisions—amplifying
existing biases or introducing new ones—that may disadvantage
protected individuals/groups and may stand to violate legal
protections. While the existing search based software testing
approaches have been effective in discovering fairness defects,
they do not supplement these defects with debugging aids—such
as severity and causal explanations—crucial to help developers
triage and decide on the next course of action. Can we measure
the severity of fairness defects in DNNs? Are these defects
symptomatic of improper training or they merely reflect biases
present in the training data? To answer such questions, we
present DICE: an information-theoretic testing and debugging
framework to discover and localize fairness defects in DNNs.

The key goal of DICE is to assist software developers in triaging
fairness defects by ordering them by their severity. Towards this
goal, we quantify fairness in terms of protected information (in
bits) used in decision making. A quantitative view of fairness
defects not only helps in ordering these defects, our empirical
evaluation shows that it improves the search efficiency due to
resulting smoothness of the search space. Guided by the quan-
titative fairness, we present a causal debugging framework to
localize inadequately trained layers and neurons responsible for
fairness defects. Our experiments over ten DNNs, developed for
socially critical tasks, show that DICE efficiently characterizes the
amounts of discrimination, effectively generates discriminatory
instances (vis-a-vis the state-of-the-art techniques), and localizes
layers/neurons with significant biases.

I. INTRODUCTION

AI-assisted software solutions—increasingly implemented
as deep neural networks [1] (DNNs)—have made substan-
tial inroads into critical software infrastructure where they
routinely assist in socio-economic and legal-critical decision
making [2]. Instances of such AI-assisted software include
software deciding on recidivism, software predicting benefit
eligibility, and software deciding whether to audit a given
taxpayer. The DNN-based software development, driven by
the principle of information bottleneck [3], involves a deli-
cate balancing act between over-fitting and detecting useful,
parsimonious patterns. It is, therefore, not a surprise that
such solutions often encode and amplify pre-existing biases in

the training data. What’s worse, improper training may even
introduce biases not present in the training data or irrelevant
to the decision making. The resulting fairness defects may not
only disadvantage protected groups [4], [5], [6], [7], [8], but
may stand to violate statutory requirements [9].

This paper presents DICE, an information-theoretic
testing and debugging framework for fairness defects
in deep neural networks.

Quantifying Fairness. Concentrated efforts from the software
engineering and the machine learning communities have pro-
duced a number of successful fairness testing frameworks [10],
[11], [12], [13]. These frameworks characterize various notions
of fairness—such as group fairness [14] (decision outcome
for various protected groups must be similar) and individual
fairness [15] (individuals differing only on protected attributes
must receive similar outcome)—and employ search-based test-
ing to discover fairness defects. While a binary classification
of fairness is helpful in discovering defects, developers may re-
quire further insights into the nature of these defects to decide
on the potential “bug fix”. Are some defects more severe than
others? Whether these defects stem from biases present in the
training data, or they are artifacts of an inadequate training?
Is it possible to find an alternative explanation of the training
data that does not use protected information?

Individual discrimination is a well-studied [16], [11], [17],
[18] causal notion of fairness that defines a function being
discriminant towards an individual (input) if there exists
another individual (potentially counterfactual), differing only
in the protected features, receives a more favorable outcome.
We present a quantitative generalization of this notion as the
quantitative individual discrimination (QID). We define QID
as the amount of protected information—characterized by en-
tropy metrics such as Shannon entropy and min entropy—used
in deriving an outcome. Observe that a zero value for the QID
measure implies the absence of the individual discrimination.
The QID measure allows us to order various discriminating
inputs in terms of their severity, as in an application that is not
supposed to base its decisions on protected information, inputs

with higher dependence indicate a more severe violation. Our
first research question (RQ1) concerns the usefulness of QID
measure in finding inputs with different severity.

Search-Based Testing. Search-based software testing provide
scalable optimization algorithms to automate discovery of
software bugs. In the context of fairness defects, the search
of such bugs involves finding twin inputs exhibiting discrimi-
natory instances. The state-of-the-art algorithms for fairness
testing [19], [17], [18] explore the input space governed
by a binarized feedback, resulting in a discontinuous search
domain. On the other hand, QID-based search algorithms can
benefit a smooth (quantitative) feedback during the optimiza-
tion, resulting in a more guided search. Our next research ques-
tion (RQ2) is to investigate whether this theoretical promise
materializes in practice in terms of discovering richer discrim-
inating instances than using classic notions of discrimination.

Causal Explanations. While the discriminating instances (or-
dered by their severity) provide a clear evidence of fairness
defects in the DNN, it is unclear whether these defects are
inherent in the training data, or whether they are artifacts of the
training process. Inspired by the notion of “the average causal
effects” [20] and AUDEE framework [21] for bug localization
in deep learning models, we develop a layer and neuron
localization framework for fairness defects. If the cause of
the defects is found to be at the input layer, it is indicative
of discrimination existing in the training data. On the other
hand, if we localize the cause of the defect to some internal
layer, we wish to further prod the DNN to extract quantitative
information about neurons and their counterfactual parameters
that can mitigate the defect while maintaining the accuracy.
This debugging activity informed our next research question
(RQ3): is it possible to identify a subset of neurons and their
causal effects on QID to guide a mitigation without affecting
accuracy?

Experiments. DICE implements a search algorithm (Algo-
rithm 1) to discover inputs that maximize QID and a causal
debugging algorithm (Algorithm 2) to localize layers and
neurons that causally affect the amounts of QID. Using 10
socio-critical DNNs from the literature of algorithmic fairness,
we show that DICE finds inputs that can use significant
amounts of protected information in the decision making;
outperforms three state-of-the-art techniques [19], [17], [18]
in generating discriminatory instances; and localizes neurons
that guides a simple mitigation strategy to reduce QID down to
15% of reported initial QID with at most 5% loss of accuracy.
The key contributions of this paper are:

1) Quantitative Individual Discrimination. We introduce
an information-theoretic characterization of discrimina-
tion, dubbed quantitative individual discrimination (QID),
based on Shannon entropy and Min entropy.

2) Search-based Testing. We present a search-based algo-
rithm to discover circumstances under which the DNNs
exhibit severe discrimination.

3) Causal Debugging. We develop a causal fairness debug-

ging based on the language of interventions to localize
the root cause of the fairness defects.

4) Experimental Evaluation. Extensive experiments over
different datasets and DNN models that show feasibility,
usefulness, and scalability (viz-a-viz state-of-the-art). Our
framework can handle multiple protected attributes and
can easily be adapted for regression tasks.

II. PRELIMINARIES

Fairness Terminology. We consider decision support systems
as binary classifiers where a prediction label is favorable if
it gives a desirable outcome to an input (individual). These
favorable predictions may include higher income estimations
for loan, low risk of re-offending in parole assessments, and
high risk of failing a class. Each dataset consists of a number
of attributes (such as income, experiences, prior arrests, sex,
and race) and a set of instances that describe the value of
attributes for each individual. According to ethical and legal
requirements, data-driven software should not discriminate on
the basis of an individual’s protected attributes such as sex,
race, age, disability, colour, creed, national origin, religion,
genetic information, marital status, and sexual orientation.

There are several well-established fairness definitions.
Group fairness requires that the statistics of ML outcomes for
different protected groups to be similar [14] using metrics such
as equal opportunity difference (EOD), which is the difference
between the true positive rates (TPR) of two protected groups.
Fairness through unawareness (FTU) [15] requires removing
protected attributes during training. However, FTU may pro-
vide inadequate support since protected attributes can influence
the prediction via a non-protected collider attribute (e.g., race
and ZIP code). Fairness through awareness (FTA) [15] is an
individual fairness notion that requires that two individuals
that deemed similar (based on their non-protected attributes)
are treated similarly. Our approach is geared toward individual
fairness.

Individual Discrimination. Causal discrimination, first stud-
ied in THEMIS [10], measures the difference between two sub-
groups via counterfactual queries. It samples individuals with
the protected attributes set to A and compares the outcome
to a counterfactual scenario where the protected attributes is
set to B. Individual discrimination (ID) is a prevalent notion
that adapts counterfactual queries to find an individual such
that their counterfactual with a different protected attributes
receives more favorable outcome. This fairness notion is used
by the state-of-the-art fairness testing to generate fairness
defects [22], [19], [17], [18] and closely related to situation
testing notion [23]. While standard group fairness metrics
(e.g., AOD/EOD) are already quantitative, the quantitative
measures do not exist for individual fairness. We propose
to adapt information theoretic tools to provide quantitative
measures for individual fairness.

Information-Theoretic Concepts. The notion of Rényi en-
tropy [24], Hα(X) quantifies the uncertainty (randomness)
of a system responding to inputs X . In particular, Shannon

entropy (α=1) and min-entropy (α=∞) are two important
subclasses of Rényi entropy. Shannon entropy (H1) measures
the expected amounts of uncertainty over finitely many events
whereas min entropy (H∞) measures the uncertainty over
single maximum likelihood event.

Consider a deterministic system (like pre-trained DNN) with
a finite set of responses and assume that the input X is
distributed uniformly. Thus, the system induces an equivalence
relation over the input set X such that two inputs are equiva-
lent if their system outputs are approximately close, i.e. x∼x′
iff DNN (x) ≈ϵ DNN (x′). Let Xo denote the equivalence
class of X with output o. Then, the remaining uncertainty
after observing the output of DNN over X can be written as:

H1(X|O) =
∑
O=o

|Xo|
|X|

. log2(|Xo|) (Shannon entropy)

where |X| is the cardinality of X and |Xo| is the size of
equivalence class of output o. Similarly, the min-entropy is
given as

H∞(X|O) = log2(
|X|
|O|

) (min-entropy)

where |O| is the number of equivalence classes over X [25],
[26], [27]. Given that the initial entropy is equal to log2(|X|)
for both entropies, the amount of information from X used by
the system to make decisions are

I1(X;O) = log2(|X|)−H1(X|O), and
I∞(X;O) = log2(|O|),

under Shannon- and min- entropies with I1 ≤ I∞.

Quantitative Notion and Fairness. Our approach differs from
these state-of-the-art techniques [28], [22], [19], [17], [29],
[18] in that it extends the individual discrimination notion
with quantitative information flow that enables us to measure
the amount of discrimination in the ML-based software sys-
tems. Given non-protected attributes and ML outcomes, the
Shannon entropy measures the expected amount of individual
discrimination over all possible responses varying protected
classes, whereas, min entropy measures the amount over a
single response from the maximum likelihood class.

Example 1. Consider a dataset with 16 different protected
values—sex(2), race(2), and age(4)—distributed uniformly,
and suppose that we have 4 individuals in the system. We
perturb the protected attributes of these individuals to generate
16 counterfactuals and run them through the DNN to get
their prediction scores. Suppose that the outputs have all 16
outputs in the same class for the first individual (absolutely
fair) and have 16 classes of size one for the second individual
(absolutely discriminatory). For the third individual, let the
outputs be in 4 classes with {4, 4, 4, 4} elements in each class
(e.g., there is one output class per each age group). For the
fourth individual, let us consider outputs to be in 5 classes
with {8, 4, 2, 1, 1} elements in each class (e.g., if race=1
then the output is class 1; else, if sex=1 then the output

is 2; else if age={1,2} then the output is 3; else there is
one output class for each age={3,4}).

We work with the following notions of discrimination.
• Individual Discrimination Notion. The individual dis-

crimination used by the state-of-the-art techniques can
only distinguish between the first individual and the rest,
but they cannot distinguish among individuals two to four.
In fact, these techniques generate tens of thousands of
individual discriminatory instances in a short amount of
time [19], [17], [18]. However, they fail to prioritize test
cases for mitigation and cannot characterize the amounts
of discrimination (i.e., their severity).

• Shannon Entropy. Using the Shannon entropy, we have
the initial fairness to be 4.0 bits, a maximum possible
discrimination. The remaining fairness of DNN are 4.0,
0.0, 2.0 and 2.125, for the first to fourth individuals,
respectively. The discrimination is the difference between
the initial and remaining fairness, which are 0.0, 4.0, 2.0
and 1.875 for the first to fourth individuals, respectively.
It is important to note that beyond the two extreme
cases, Shannon entropy deems perturbations to the third
individual (rather than the fourth) create a higher amount
of discrimination.

• Min Entropy. The initial fairness via min entropy is also
4 bits. The conditional min entropy is log 16

1 = 4.0,
log 16

16 = 0.0, log 16
4 = 2.0, and log 16

5 = 1.7, for the
four individuals, respectively. The amounts of discrimi-
nation thus are 0.0, 4.0, log 4 = 2.0 and log 5 = 2.3,
respectively. Beyond the two extreme cases where both
entropies agree, the min entropy deems perturbations
to the fourth individual create a higher amount of dis-
crimination. This is intuitive since the discrimination on
the fourth case is more subtle, complex, and significant.
Therefore, the ML software developers might prioritize
those cases characterized by the min entropy.

III. OVERVIEW

DICE in Nutshell. Figure 1 shows an overview of our frame-
work DICE. It consists of two components: (1) an automatic
test-generation mechanism based on search algorithms and
(2) a debugging approach that localizes the neurons with
significant impacts on fairness using a causal algorithm. First,
DICE searches through the space of input dataset to find
circumstances on the non-protected attributes under which
the DNN-under-test shows a significant dependency on the
protected attributes in making decisions. In doing so, it works
in global and local phases. In the global phase, the search ex-
plores the input space to increase the amount of discrimination
in each step of search. On the other hand, in the local phase it
exploits the promising seeds from the global phase to generate
as many discriminatory instances as possible.

The key elements of search is a threshold-based clustering
algorithm used for computing both gradients and objective
functions that provide a smooth feedback. The search char-
acterizes the quantitative individual discrimination (QID) and

Fig. 1: Workflow of DICE. Given a DNN and relevant input dataset, DICE quantifies QID discrimination via testing and applies
causal debugging to localize and mitigate QID discrimination.

returns a set of interesting inputs. Second, DICE uses those
inputs to localize neurons with the largest causal effects on the
amounts of discrimination. In doing so, it intervenes [30] over
a set of suspicious neurons. For every neuron, our debugging
approach forces the neurons to be active (n>0) and non-active
(n=0) over the test cases as far as the functional accuracy
of DNN remains in a valid range. Then, it computes the
difference between the amounts of QID in these two cases
to characterize the causal effects of the neuron on fairness.

DICE reports top k neurons that both have positive im-
pacts (i.e., their activation reduces the amounts of discrimina-
tion) and negative impacts (i.e, their activation increases the
amounts of discrimination). A potential mitigation strategy is
to intervene to keep a small set of neurons activated (for the
positive neurons) or deactivated (for the negative neurons).

Test Cases. Consider the adult census income [31] dataset
with a pre-trained model with 6 layers [17] to overview DICE
in practice. We ran DICE for 1 hours and obtain 230, 593 test
cases. It discovered 36 clusters from the initial of 14 clusters,
and the amounts of QID are 4.05 and 2.64 bits for min entropy
and Shannon entropy, respectively, out of a total of 5.3 bits
of information from the protected attributes. Considering to
order the test cases, we have 6 test case with maximum QID
discrimination of 5.3 bits. In addition, we have 29 and 112
test cases cases with 5.2 and 5.1 bits of QID discrimination.
The reported numbers are averaged (and rounded) for 10 runs.

Localization and Mitigation. DICE uses the generated test
cases to localize layers and neurons with a significant causal
contribution to the discrimination. For the census dataset, it
identifies the second layer as the layer with largest sensitivity
to protected attributes. Among the neurons in this layer, DICE
found that 15th neuron has the largest negative influence on
fairness (the discrimination decreased by 19.6% when it is
deactivated) and 19the neuron has the largest positive influence
on fairness (the discrimination decreased by 17.6% when it
is activated). Following this localization, a simple mitigation
strategy of activating or deactivating these neuron reduces the
amounts of QID discrimination by 20% with 3% accuracy loss.

Comparison to the State-of-the-art. We compare DICE to the

state-of-the-art techniques in terms of generating individual
discrimination (ID) (rather than the quantitative notion) per
each protected attribute. Our goal is to evaluate whether the
clustering-based search is effective in generating discrimina-
tory instances. We run DICE and baseline for 15 minutes,
and report average of results over 10 runs. The baseline
includes AEQUITAS [19], ADF [17], and NEURONFAIR [18].
Considering sex as the protected attribute in the census dataset,
DICE generated 79.0k instances whereas AEQUITAS, ADF,
and NEURONFAIR generated 10.4k, 18.2k, and 21.6k discrim-
inatory instances, respectively. Overall, DICE generate more
ID instances in all cases with more success rates. However,
DICE is slower in finding the first ID instance in order of a few
seconds (in average), since our approach does not generate ID
instances in global phase. When considering the time to the
first 1,000 instances, DICE has significantly outperformed the
state-of-the-art. We conjecture that the improvements are due
to smooth search space via quantitative feedback.

IV. PROBLEM STATEMENT

We consider DNN-based classifiers with the set of input
variables A partitioned into protected set of variables Z (such
as race, sex, and age) and non-protected variables X (such
as profession, income, and education). We further assume the
output to consist of t prediction classes.

Definition IV.1 (DNN: Semantics). A deep neural network
(DNN) encodes a function D : X × Z → [0, 1]t where
X = X1 × X2 · · · × Xn is the set of non-protected input
variables, Z = Z1 × Z2 · · · × Zr is the set of protected input
variables, and the output is t-dimensional probabilistic vector
corresponding to t prediction classes. The predicted label
Dℓ(x, z) of an input pair (x, z) is the index of the maximum
score, i.e. Dℓ(x, z) = maxiDℓ(x, z)(i). We assume that the
set of protect input variables are finite domain, and we let m
be the cardinality of the set of protected variables Z.

Definition IV.2 (DNN: Syntax). A DNN D is parameterized
by the input dimension n+r, the output dimension t, the depth
of hidden layers N , and the weights of its hidden layers
W1,W2, . . . ,WN . Our goal is to test and debug a pre-trained
neural network with known parameters and weights. Let Di

be the output of layer i that implements an affine mapping
from the output of previous layer Di−1 and its weights Wi−1
for 1 ≤ i ≤ N followed by

1) a fixed non-linear activation unit (e.g., ReLU defined as
Di−1 7→ max {Wi−1.Di−1, 0}) for 1 ≤ i < N , or

2) a SoftMax function that maps scores to probabilities of
each class for i = N .

Let Dj
i be the output of neuron j at layer i.

Individual Discrimination. We say a DNN D is biased based
on causal discrimination notion [16], [11], [17], [18] if

∃z1, z2 ∈ Z, x ∈ X s.t. Dℓ(x, z1) ̸= Dℓ(x, z2),

for z1 ̸= z2 of protected inputs. Intuitively, the idea is to
find an individual such that their counterfactual with different
protected attributes such as race receives a different outcome.

Quantitative Individual Discrimination. In the setting of
fairness testing, it is often desirable to quantify the amounts
of bias for individuals. We define the notion quantitative indi-
vidual discrimination (QID) based on the equivalence classes
induced from the output of DNN over protected attributes.
Formally, QID(Z,X = x) = ⟨Z1, . . . , Zk⟩ that is the quotient
space of Z characterized by the DNN outputs under an
individual with non-protected value x. Using this notion, we
say a pair of protected values z, z′ are in the same equivalence
class i (i.e., z, z′ ∈ Zi) if and only if D(z, x) ≈ D(z′, x).

Given that Z is uniformly distributed and D is a determinis-
tic function, we can quantify the QID notion for an individual
(z, x) according to the Shannon and min entropy, respectively:

Q1(Z, x)= log2(m)−
k∑

i=1

|QID i(Z, x)|
m

. log2(|QID i(Z, x)|)

Q∞(Z, x) = log2(m)− log2(
m

k
) = log2(k).

where m is the cardinality of Z, |QID i(Z, x)| is the size of
equivalence class i, and k is the number of equivalence classes.

Debugging/Mitigating DNN for QID. After characterizing
the amounts of discrimination via QID , our next step is to
localize a set of layers and neurons that causally effect the
output of DNN to have k equivalence classes.

Causal logic [30] provides a firm foundation to reason
about the causal relationships between variables. We consider
a structural causal model (SCM) with exogenous variables
U over the unobserved input factors, endogenous variables
V over (X,Z,Dj

i); and the set of functions F over the set
V using the DNN function D and exogenous variables U .
Using the SCM, we aim to estimate the average causal effect
(ACE) [30] of neuron Dj

i on the QID.
A primary tool for performing such computation is called

do logic [20]. We write do(i, j, y) to indicate that the output
of neuron j at layer i is intervened to stay y. In doing so,
we remove the incoming edges to the neuron and force the
output of neuron to take a pre-defined value y, but we are

not required to control back-door variables due to the feed-
forward structure of DNN. Then, the ACE of neuron Dj

i on the
quantitative individual discrimination with min entropy can be
written as E[Q∞|do(i, j, y),k, l], which is the expected QID
after intervening on the neuron given that the non-intervened
DNN characterized k classes with an accuracy of l. Our
goal is to find neurons with the largest causal effects on
the QIDs, requiring that such interventions are faithful to the
functionality of DNN.

Definition IV.3 (Quantitative Fairness Testing and Debug-
ging). Given a deep neural network model D trained over
a dataset A with protected (Z ⊂ A) and non-protected
(X ⊂ A) attributes; the search problem is to find a single non-
protected value x ∈ X such that the quantitative individual
discrimination (QID), for a chosen measure Q1 or Q∞, is
maximized over the m protected values Σ = {z1, . . . , zm}.
Given the inputs (Σ, x) characterizing the maximum QID,
our debugging problem is to find a minimal subset of layers
l ⊂ {1, . . . , N} and neurons D

(J)
l for J ⊆ |Wl| such that the

average causal effects of DJ
l on the QID are maximum.

V. APPROACH

Characterizing Quantitative Individual Discrimination.
Given a DNN D over a dataset A, our goal is to characterize
the worst-case QID over all possible individuals. Since min
entropy characterizes the amounts of discrimination from one
prediction with Q∞(Z, x) ≥ Q1(Z, x), it is a useful notion
to prioritize the test cases. Therefore, we focus on Q∞ and
propose the following objective function:

maxx∈X 2Q∞(Z,x) + (1− exp(−0.1 ∗ δ))

where 2Q∞(Z,x) = k and δ is the maximum distance between
equivalence classes, normalized with the exponential function
to remain between 0 and 1. The term is used to break ties
when two instances characterize the same number of classes,
by preferring one with the highest distance. Overall, the goal
is to find a single value of non-protected attribute x such that
the neural network model D predicts many distinguishable
classes of outcomes when x is paired with m protected values.
However, finding those inputs requires an exhaustive search
in the exponential set of subsets of input space, and hence
is clearly intractable. We propose a gradient-guided search
algorithm that aims to search the space of input variables
(attributes) to maximize the number of equivalence classes
and generate as many discrimination instances as possible.

Search Approach. Our search strategy consists of global and
local phases as in some of the prior work [17], [29], [18].
The goal of the global phase is to find the maximum quanti-
tative individual discrimination via gradient-guided clustering.
The local phase uses the promising instances to generate a
maximum number of discriminatory instances (ID).
Global Phase. Given a current instance x, the global stage first
uses m different values from the space of protected attributes,
while keeping the values of non-protected attributes the same.
Then, it receives m prediction scores from the DNN and

partitions them into k classes. We adapt a constrained-based
clustering with ϵ where two elements cannot be in the same
cluster if their scores differ more than ϵ. Now, the critical step
is to perturb the current instance over a subset of non-protected
attributes with a direction that will likely increase the number
of clusters induced from the perturbed instance in the next
step of global search.

In doing so, we first compute the gradients of DNN loss
function for a pair of instances (say a, a′) in the cluster with
the maximum elements. The intuition is that we are more
likely to split the largest cluster into 2 or more sub-clusters
and increase the number of partitions in the next step. For
the pair of samples, we use the non-protected attributes that
have the same direction of gradients d since it shows the
high sensitivity of loss function with respect to small changes
on those common features of the pair. If we were to use
gradients of opposite directions, we will neutralize the effects
of gradients since we only perturb one instance over the non-
protected attributes. Finally, we perturb the current sample x
to generate x′ using the direction d and step size sg .

Local Phase. Once we detect an instance with more than 2
clusters, we enter a local phase where the goal is to generate
as many discriminatory instances (ID) as possible. In our
quantitative approach, we say that an unfavorable decision for
an individual x is discriminatory if there is a counterfactual
individual x′ that received a favorable outcome. Similar to the
state-of-the-art [19], [17], [18], we use non-linear optimizer
that takes an initial instance x, a step function to generate the
next instance around the neighborhood of the current instance,
and an objective function that quantifies the discrimination of
the current instance. Since our approach uses a continuous
objective based on the characteristics of clusters, it enables us
to guide the local search to generate discriminatory instances.

Search Procedure. Algorithm 1 sketches our search algorithm
to quantify the amounts of bias. We first use the clustering
(KMeans algorithm) to partition the data points into p groups
(line 1). Next, we run the algorithm until the time-out T
reaches where in each iteration we seed a sample randomly
from one of the partitions p (line 2). Then, we proceed into
global and local phases of search.

In the global phase, we first use the seed instance x and
perturb the protected attributes P to generate m possible
instances Xm with different protected values and the same
non-protected ones. Then, we run Xm through the DNN
model to get the probability scores Sm (line 5). Then, we
cluster the scores Sm into k groups using the tolerance ϵ (line
6). Afterward, we compute the gradients over two random
instances (from the cluster with the largest size) and use a
subset of non-protected features that have the largest number
of agreements on the gradient directions. Then, we use those
features and their directions to perturb the inputs x and
generate the next instance x′ (line 7-10). Then, we enter the
local phase if the number of clusters or distance between are
increased (line 11).

In the local phase, we use the general-purpose optimizer,

Algorithm 1: DICE (SEARCH)
Input: Dataset A, deep learning model D, the loss

function for the DNN J , protected attributes P ,
non-protected attributes NP , the number of
partitions over the dataset p, the step size in
global perturbation sg , the step size in local
perturbation sl, the maximum number of global
iterations Ng , the maximum number of local
iterations Nl, the tolerance ϵ, and time-out T .

Output: Num. Clusters and (local+Global) Test Cases.
1 A′, cur ← KMeans(A, p), time()
2 while time() - cur < T do
3 x, i, k, δ ← pick(A

′
), 0, 1, 0.0

4 while i < Ng do
5 Im, Sm ← Generate_Predict(a, P)
6 Xk, δ′ ← Clust(Sm, ϵ)
7 a, a′ ← Choose_Pair_Max(Xk)
8 Gs ← (∇J(a),∇J(a′))
9 d ← choose_common_direct(Gs, NP)

10 x′ ← perturb(x, d, sg)
11 if (|Xk| > k) or (|Xk| = k and δ′ > δ) then
12 eval_f(x) {
13 I ′m, S′m ← Generate_Predict(x, P)
14 Xk′ ← Clust(S′m, ϵ)
15 ∆ ← arg.max(Xk′)−arg.min(Xk′)
16 local inps.add(x)
17 Return −∆}
18 step_f ← λx perturb_local(x, sl)
19 LBFGS(x, eval_f, step_f, Nl)

20 global inps.add(a)
21 k, x ← max(k, |Xk|), x′

22 return k, I = global inps ∪ local inps

known as LBFGS [32], which takes an initial seed x, an
objective function, a step function, and the maximum number
of local iterations Nl; it returns the generated instances during
the optimization (Line 12-19). In the objective function shown
with eval_f (Line 12-17), we generate m instances with the
same non-protected values but different protected ones (Line
13). We generate prediction scores for those instances and
cluster them with tolerance parameter ϵ (line 14). Then, we
compute the difference between the indices of two clusters
with the smallest and largest scores (line 15). Finally, we
record the generated sample and return the difference as the
evaluation of optimizer at the current sample (line 16-17).
The step function is shown with perturb_local (Line 18)
where it guides the optimizer to take one step in the input
space. Our step function uses a random sample from a different
cluster compared to the current sample. Then, it computes the
normalized sum of gradients and perturbs it using the smallest
gradients to remain in the neighborhood of the current sample.

Debugging Approach. Since it is computationally difficult
to intervene over all possible neurons in a DNN, we first

adapt a layer-localization technique from the literature of DL
framework debugging [33], [21] where we detect a layer with
the largest sensitivity to the protected attributes. Let Di(z, x)
be the output of layer i over protected value z and non-
protected value x. Let ∆i(x) : R|Di| × R|Di| → R be the
distance between the outputs of DNN at layer i as triggered
by m different protected values and the same non-protected
value x, and let δi be the maxx ∆i(x). The rate of changes in
the sensitivity of layer i (w.r.t protected attributes) is

ρi =
δi −maxj δj
maxj δj + ϵ

, with 0 ≤ j < i

where δ0 = 0.0 and ϵ = 10−7 (to avoid division-by-
zero [33], [21]). Let l = argmaxi ρi be the layer index with
the maximum rate of changes. Our next step is to localize
neurons in the layer l that have significant positive or negative
effects on fairness. Let V j

l be the set of possible values for
neuron j at later l (recorded during the layer localization).
We are interested in computing the average causal effects
when the neuron Dj

l is activated vs. deactivated, noting that
such interventions might affect the functionality of DNN.
Therefore, among a set of intervention values, we choose
one activated value v1 ∈ V j

l > 0 and one deactivated value
v2 ∈ V j

l ≈ 0, considering the functional accuracy of DNN
within ϵ of original accuracy A. Therefore, we define average
causal difference (ACD) for a neuron Dj

l as:

E[Q∞ | do(l, j, v1 > 0), k, A]−E[Q∞ | do(l, j, v2 ≈ 0), k, A],

where do notation is used to force the output of neuron
j at layer l to a fix value v. We then return the neuron
indices with the largest positive (aggravating discrimination)
and smallest negative (mitigating discrimination). Let î and ĵ
be the layer and neuron with the largest positive ACD. One
simple mitigation strategy is thus to deactivate the neuron Dĵ

l ,
expecting to reduce QID by ACD/k percentage. Similarly,
activating the neuron with the smallest negative ACD is
expected to reduce QID by ACD/k percentage.

Debugging Procedure. Algorithm 2 shows the debugging
aspect of DICE. Given a set of test cases from the search
algorithm, we first use a notion of distance (e.g, ∆ = L1) to
compute the difference between any pair of protected values
z, z′ w.r.t the outputs of layer l ∈ {1, . . . , N} (line 1). Then,
we compute the rate of changes (line 2-3) and return a layer l
with the largest change (line 4). We compute various statistics
on the output of every neuron i at layer l such as the minimum,
maximum, average, average±std. dev, average±2∗std. dev, etc
(line 5). Among those values, we take the smallest and largest
values such that the intervention on the neuron i at layer l has
the minimal impacts on the accuracy of DNN (line 6). Finally,
we compute the average causal difference (line 7) and return
the indices of layer, neurons with large negative influence, and
neurons with large positive influence.

VI. EXPERIMENTS

Datasets and DNN models. We consider 10 socially critical
datasets from the literature of algorithmic fairness. These

Algorithm 2: DICE (DEBUGGING).
Input: Dataset A = (AX , AZ), D with accuracy AD,

Test cases I , the distance function ∆, the
tolerance of layer localization ϵ1, the tolerance
of accuracy loss ϵ2, and k top items.

Output: Layer Index, Negative, and Positive Neurons.
/* Layer Localization */

1 δ ← λl max
∑

x∈I ∆
(
Dl(z, x), Dl(z

′, x)
)

2 δ[0], δmax ← 0.0, λi maxj<i δ[j]

3 ρ ← λl
δ[i]−δmax[i]
δmax[i]+ϵ1

4 l ← argmaxi ρ[i]
/* Neuron Localization */

5 Vl ← λi stats(Di
l)

6 vl ← λi λj |AD −AD←do(l,i,Vl[j])| ≤ ϵ2
7 ACDl←λj E (k′|do(l, j, vjl>0)) - E(k′|do(l, j, vjl=0))
8 return l, topk(maxACDl), topk(minACDl).

datasets and their properties are described in Table I. For
the DNN model, we used the same architecture as the lit-
erature [17], [18], [29] and trained all datasets on a six-
layers fully-connected neural network with ⟨64, 32, 16, 8, 4, 2⟩
neurons. We used the same hyperparameters for the all training
with num epochs, batch size, and learning rate are set to
1000, 128, and 0.01, respectively. The accuracy of trained
models are reported in Table V.

Technical Details. We implemented DICE with TensorFlow
v2.7.0 and scikit-learn v0.22.2. We run all the experiments
on an Ubuntu 20.04.4 LTS OS sever with AMD Ryzen
Threadripper PRO 3955WX 3.9GHz 16-cores X 32 CPU and
two NVIDIA GeForce RTX 3090 GPUs. We choose the values
10, 1000, 0.025, 1, and 1 for max global, max local, ϵ, s g ,
and s l in Algorithm 1, respectively, and take the average of
10 multiple runs for all experiments. In Algorithm 2, we used
L1-norm, 10−7, 0.05, and 3 for ∆, ϵ1, ϵ2, and k, respectively.

Research Questions. We seek to answer the following three
questions using our experimental setup.
RQ1 Can DICE characterize the amounts of information

from protected attributes used for the inferences?
RQ2 Is the the proposed search algorithm effective and

efficient (vis-a-vis the state-of-the-art techniques) in
generating individual discrimination instances?

RQ3 Can the proposed causal debugging guide us to localize
and mitigate the amounts of discrimination?

Our open-source tool DICE with all experimental
subjects are publicly accessible:
• https://github.com/armanunix/Fairness-testing

A. Characterizing QID via Search (RQ1)

An important goal is to characterize the amount of infor-
mation from protected attributes used during the inference of
DNN models. Table II shows the result of experiments to
answer this research question. The left side of table shows the

https://github.com/armanunix/Fairness-testing

TABLE I: Datasets used in our experiments.

Dataset #Instances #Features Protected Groups Num. Protected Outcome Label
Name Size Values (m) Label 1 Label 0

Adult
32, 561 13

Sex 2
High Income Low IncomeCensus Race 5 90

Income [31] Age 9

7, 214 12
Sex 2

Did not Reoffend ReoffendCompas [34] Race 2 12
Age 3

German
600 20

Sex 2 16 Good Credit Bad CreditCredit [35] Age 8
Default

13, 636 23
Sex 2 12 Default Not DefaultCredit [36] Age 6

Heart
297 13

Sex 2 14 Disease Not DiseaseHealth [37] Age 7
Bank Marketing [38] 45, 211 16 Age 9 9 Subscriber Non-subscriber
Diabetes [39] 768 8 Age 9 9 Positive Negative
Students

1044 32
Sex 2 16 Pass Not PassPerformance [40] Age 8

15, 830 137
Age 9

Utilized Benefits Not Utilized BenefitsMEPS15 [41] Race 2 36
Sex 2

15, 675 137
Age 9

Utilized Benefits Not Utilized BenefitsMEPS16 [41] Race 2 36
Sex 2

initial characteristics such as the number of protected values
(m), the maximum possible amounts of discrimination (QI)
based on min(ϵ−1,m), and the initial number of clusters found
using samples from the dataset (KI). The right side of table
shows the results after running our search for 1 hour. The
column #I is the number of QID instances generated, and
KF is the maximum number of clusters discovered by DICE.
The column TKF

is the time taken to find the maximum
number of clusters from an input with initial clusters KI

(in seconds). The columns Q∞ and Q1 are the quantitative
individual discrimination based on min entropy and Shanon
entropy, respectively. The columns #IK1

F
, #IK2

F
, and #IK3

F

show the number of test cases with the highest, second-highest,
and third-highest QIDs, respectively, that order test cases with
their QID severity. Overall, the results show that DICE can find
3.4× more clusters (in average) from the initial characteristics
within one minute of search. The DNN for Students dataset
showed the largest increase in the number of clusters going
from 1.9 to 10.9. DICE found that Adult Income Census
dataset has the largest amounts of QID where 4.05 out of
5.3 bits (76.4%) from protected variables are used to make
decisions. The German Credit dataset with 1.61 out of 4.0
bits (40.0%) showed the least amounts of discrimination. For
test-case prioritizing, the column #IK1

F
shows our approach to

be useful in finding a small percentage of generated test cases
with the worst-case discrimination. In 7 out of 10 experiments,
DICE found less than 50 test cases with severe discrimination
out of hundreds of thousands inputs.

Answer RQ1: The search algorithm is effective in char-
acterizing the amounts of discrimination via QID. Within 1
hour, it increased the number of clusters by 3.4× in average,
and found instances that used up to 76% of protected
information (4.05 out of 5.3 bits) to infer DNN outcomes.
DICE is useful to prioritize test cases with their severity
where it generates less than 50 test cases with the maximum
QID among hundreds of thousands test cases.

B. Individual Discriminatory Instances (RQ2)

In this section, we compare the efficiency and effectiveness
of our search algorithm to the state-of-the-art techniques in
searching individual discrimination (ID) instances (as defined
in Section IV). Our baselines are AEQUITAS [19], ADF [17],
and NEURONFAIR [18]. We obtained the implementations
of these tools from their GitHub repositories and configured
them according to the prescribed setting to have the best
performance. Following these techniques, we report the results
for each protected attribute separately. Table III shows the
results of baselines and DICE in runs of 15 minutes. The
results are averaged over 10 repeated runs. The column #ID
is the total number of generated individual discriminatory
instances. The column l_s is the success rate of local stage
of searches. We exclude the global success rate since the goal
of global phase in our search is to maximize QID whereas
the local phase focuses to generate many ID instances. We
calculate success rate as the number of ID found over the total
number of generated samples. The columns T.1st and T.1k
are the amount of time (in seconds) taken to find the first
ID instance and to generate 1, 000 individual discriminatory
instances (note: N/A in column T.1k means that the tool did
not generate 1, 000 IDs in the experiment timeout of 900
seconds in the average of 10 runs).

The result shows that DICE outperforms the-state-of-the-
art in generating many ID instances. In particular, DICE
finds 27.1×, 16.0×, and 16.0× more IDs in the best case
compare to AEQUITAS, ADF, and NEURONFAIR, respectively.
DICE also generates 3.2×, 2.3×, and 2.6× more IDs in the
worst case compare to AEQUITAS, ADF, and NEURONFAIR,
respectively. The success rate of local search are 20.6%,
33.0%, 29.6%, and 78.2% in average for AEQUITAS, ADF,
NEURONFAIR, and DICE, respectively. For the time taken to
find the first ID, AEQUITAS achieves the best result with an
average of 0.03 (s) whereas it took DICE 1.46 (s) in average
to find the first ID. In average, DICE was found to take the
lowest time to generate 1000 IDs with 57.2 (S), while ADF

TABLE II: DICE characterizes QID for 10 datasets and DNNs in 1 hour run (results are the average of 10 runs).

Dataset m QI KI #I KF TKF
Q∞ Q1 #IK1

F
#IK2

F
#IK3

F

Census 90 5.3 13.54 230, 593 35.61 21.04 4.05 2.64 6.0 28.6 111.6
Compas 12 3.6 3.12 157, 968 10.24 6.50 1.81 1.40 35.2 338.7 1, 016.9
German 16 4.0 2.34 245, 915 9.56 13.14 1.61 1.10 6.6 16.2 54.8
Default 12 3.6 5.58 258, 105 11.26 10.94 2.10 1.78 3, 528.8 9, 847.2 9, 771.0
Heart 14 3.8 4.54 270, 029 10.01 11.88 2.31 1.80 21.7 135.2 579.7
Bank 9 3.2 1.45 172, 686 8.93 3.68 2.25 1.98 5, 118.5 13, 513.3 20, 438
Diabetes 10 3.3 2.39 504, 414 7.90 0.016 1.40 1.11 89.7 609.6 2, 310.1
Students 16 4 1.90 133, 221 10.90 14 1.93 1.35 16.0 130.7 128.7
MEPS15 36 5.2 7.03 19, 673 18.52 31.62 2.61 1.62 2.6 3.5 6.0
MEPS16 36 5.2 9.06 14, 266 19.25 49.16 2.21 1.52 2.0 3.5 6.0

took 179.1 (s), NEURONFAIR took 135.4 (s), and AEQUITAS
took the longest time at 197.7 (s). Overall, our experiments
indicate that DICE is effective in generating ID instances
compared to the three state-of-the-art techniques, largely due
to the smoothness of the feedback during the local search.

Answer RQ2: Our experiments demonstrate that DICE out-
performs the state-of-the-art fairness testing techniques [19],
[17], [18]. In the best case, our approach found 20×
more individual discrimination (ID) instances than these
techniques with almost 3× more success rates in average.
However, we found that DICE is slower than those tech-
niques in finding the first ID instance in the order of a few
seconds.

C. Causal Debugging of DNNs for Fairness (RQ3)

We perform experiments over the DNN models to study
whether the proposed causal debugging approach is useful
in identifying layers and neurons that significantly effect the
amounts of discrimination as characterized by QID. Table IV
shows the results of experiments (averaged over 10 indepen-
dent runs). The first two columns show the localized layer
and its influence (i.e., l and ρ in Algorithm 2). The next six
columns show top 3 neurons with the positive influence on
fairness (i.e., activating those neurons reduce the amounts of
discrimination based Q∞). The last six columns show top 3
neurons with the negative influence on fairness (i.e., activating
those neurons increase the amounts of discrimination based
Q∞). The layer index 2 is more frequently localized than other
layers where the layers 3, 4, and 5 are localized once. Overall,
the average causal difference (ACD) ranges from 4% to 55%
for neurons with positive fairness effects and from 0.6% to
18.3% for neurons with negative fairness effects.

Guided by localization, DICE intervenes to activate neurons
with positive fairness influence or de-activate those with
negative influence. Table V shows the results of this mitigation
strategy. The columns A and K show the accuracy and
the number of clusters (averaged over a set of random test
cases) reported by DICE before mitigation over the DNN
model. The columns A=0 and K=0 are accuracy and the
number of clusters reported after mitigating the DNN model
by de-activating the neuron with the highest negative fairness

impacts (as suggested by Neuron−1 in Table IV). Similarly,
the columns A>0 and K>0 are accuracy and the number of
clusters reported after mitigating the DNN model by activating
the neuron with the highest positive fairness impacts (as
suggested by Neuron+1 in Table IV). The results indicate that
the activation interventions can reduce QID discrimination by
at least 5% with 3% loss of accuracy and up to 64.3% with
2% loss of accuracy. The de-activation, on the other hand, can
improve the fairness by at least 6% with 1% loss of accuracy
and up to 27% with 2% loss.

Answer RQ3: The debugging approach implemented in
DICE identified neurons that have at least 5% and up to 55%
positive causal effects on the fairness and those which have
at least 0.6% and up to 18.3% negative causal effects. A
mitigation strategy followed by the localization can reduce
the amounts of discrimination by at least 6% and up to
64.3% with less than 5% loss of accuracy.

VII. DISCUSSION

Limitation. In this work, we consider all set of protected
values and perturb them to generate counterfactual. Various
perturbations of protected attributes may yield unrealistic
counterfactuals and contribute towards false positives (an over-
approximation of discrimination). This limitation can be miti-
gated by supplying domain-specific constraints (Age<YY =⇒
NOT(married)): we already apply some common-sense con-
straints (e.g., to ensure valid range of age). In addition, similar
to any dynamic testing methods, our approach might miss
discriminatory inputs and is prone to false negatives. The
probability of missing relevant inputs can be contained under
a suitable statistical testing (e.g., Bayes factor). In addition,
our debugging approach is similar to pin-pointing suspicious
code fragments and is based on causal reasoning of its effect in
decision making rather than correlation. But, it is not to furnish
explanations or interpretations of black-box DNN functions.

Threat to Validity. To address the internal validity and ensure
our finding does not lead to invalid conclusion, we follow
established guideline and take average of repeated experi-
ments. To ensure that our results are generalizable and address
external validity, we perform our experiments on 10 DNN
models taken from the literature of fairness testing. However,

TABLE III: Comparison of generating discriminatory instances to the state-of-the-art in 900 seconds. PROT. is the the protected
attributes; #ID is the number of individual discriminatory instances; l s is the success rate of the local search; T.1st and T.1k
are the time taken to find the first and 1, 000th discriminatory instance, respectively (in seconds). The results are averaged
over 10 runs of each tool where we report the deviation from the mean in the parenthesis. The best outcomes are highlighted
in bold (k is 1,000 and ϵ < 0.1 used for the standard deviation).

Dataset Prot. AEQUITAS [19] ADF [17] NEURONFAIR [18] DICE
#ID (k) l_s (%) T.1 (s) T.1k (s) #ID (k) l_s (%) T.1 (s) T.1k (s) #ID (k) l_s (%) T.1 (s) T.1k (s) #ID (k) l_s (%) T.1 (s) T.1k (s)

Censes
sex 10.4 (1.1) 10.3 (1.0) 0.02 (ϵ) 88.5 (13.1) 18.2 (1.0) 18.3 (0.1) 0.5 (ϵ) 52.1 (7.4) 21.6 (1.3) 19.5 (0.8) 0.05 (ϵ) 38.8 (6.5) 79.0 (3.2) 74.0 (1.6) 0.5 (ϵ) 9.8 (0.6)
age 8.8 (7.2) 29.1 (2.2) 0.02 (ϵ) 113.5 (34.8) 21.6 (1.2) 55.8 (2.0) 0.5 (ϵ) 33.0 (7.3) 21.8 (11) 54.8 (1.8) 0.01 (ϵ) 48.9 (19.7) 112 (2.0) 93.4 (0.6) 0.5 (ϵ) 8.0 (1.0)
race 13.2 (9.7) 25.2 (1.5) 0.02 (ϵ) 89.9 (15.9) 24.1 (9.0) 43.3 (1.0) 0.7 (0.2) 40.6 (10.0) 25.9 (1.1) 43.5 (2.8) 0.01 (ϵ) 37.5 (9.9) 107 (1.7) 88.1 (0.8) 0.5 (ϵ) 8.8 (1.3)

Compas
sex 12.6 (3.3) 13.8 (3.2) 0.01 (ϵ) 118.2 (16.2) 17.3 (0.7) 17.4 (0.6) 0.02 (ϵ) 49.0 (14.0) 15.1 (1.1) 14.3 (0.9) 0.02 (ϵ) 56.3 (9.1) 40.2 (1.5) 59.0 (1.4) 0.2 (ϵ) 27.6 (5.9)
age 6.8 (0.9) 10.3 (1.3) 0.02 (ϵ) 150.3 (23.7) 19.0 (0.9) 25.6 (1.2) 0.01 (ϵ) 47.6 (5.8) 14.0 (0.8) 18.1 (0.9) 0.01 (ϵ) 70.1 (15.1) 66.2 (3.0) 72.1 (1.6) 0.01 (ϵ) 19.7 (2.9)

German sex 8.2 (0.8) 12.7 (1.2) 0.01 (ϵ) 120.7 (20.1) 14.3 (0.7) 22.1 (0.8) 0.02 (ϵ) 68.7 (12.0) 12.9 (0.6) 18.3 (0.8) 0.09 (ϵ) 86.4 (14.5) 62.6 (1.6) 80.2 (0.6) 0.2 (0.2) 15.0 (2.1)
age 8.4 (0.6) 39.8 (2.1) 0.02 (ϵ) 118.9 (22.9) 13.4 (1.1) 57.4 (3.0) 0.01 (ϵ) 60.6 (12.9) 12.9 (0.8) 52.5 (2.2) 0.01 (ϵ) 56.5 (12.7) 78.7 (0.8) 93.6 (0.2) 0.05 (ϵ) 11.1 (0.5)

Default sex 4.6 (0.6) 5.3 (0.6) 0.2 (0.2) 200.0 (45.1) 12.8 (0.7) 18.1 (1.1) 0.01 (ϵ) 78.8 (7.3) 11.4 (0.9) 14.9 (1.3) 0.01 (ϵ) 80.0 (15.4) 29.4 (1.5) 38.8 (1.9) 2.1 (1.8) 22.0 (10.5)
age 7.8 (2.5) 17.2 (3.2) 0.08 (ϵ) 130.4 (73.8) 13.3 (1.3) 43.4 (3.1) 0.02 (ϵ) 78.9 (19.8) 9.0 (1.1) 29.9 (3.5) 0.06 (ϵ) 104.8 (14.7) 50.4 (3.7) 68.4 (2.9) 0.6 (ϵ) 36.1 (17.1)

Heart sex 7.9 (3.2) 9.1 (3.4) 0.02 (ϵ) 171.8 (30.5) 10.6 (1.0) 13.6 (1.2) 0.01 (ϵ) 94.9 (16.1) 10.2 (0.5) 10.9 (.5) 0.01 (ϵ) 84.4 (23.9) 84.4 (1.3) 83.9 (1.2) 0.04 (ϵ) 7.7 (0.4)
age 16.7 (1.7) 48.1 (4.0) 0.02 (ϵ) 79.0 (13.2) 25.8 (1.7) 70.0 (2.5) 0.01 (ϵ) 44.1 (18.6) 28.7 (1.2) 68.3 (1.4) 0.01 (ϵ) 37.9 (16.5) 92.5 (1.6) 95.1 (0.4) 0.04 (ϵ) 7.5 (0.6)

Bank age 11.0 (1.8) 38.0 (4.1) 0.04 (ϵ) 115.0 (42.3) 7.9 (1.0) 34.2 (4.2) 0.02 (ϵ) 136 (39.8) 9.2 (1.1) 36.6 (4.1) 0.03 (ϵ) 107.3 (40.2) 47.4 (5.6) 87.3 (1.4) 0.4 (0.2) 25.0 (19.5)
Diabetes age 15.3 (1.0) 84.5 (1.7) 0.01 (ϵ) 29.3 (4.7) 46.8 (0.9) 76.4 (0.8) 0.01 (ϵ) 17.8 (4.2) 47.9 (1.7) 76.2 (1.1) 0.01 (ϵ) 18.9 (4.7) 171 (1.4) 94.2 (0.1) 0.04 (ϵ) 5.1 (0.2)

Student sex 2.4 (0.4) 6.1 (1.0) 0.03 (ϵ) 419.5 (58.9) 4.7 (0.4) 12.2 (1.0) 0.01 (ϵ) 200.8 (25.5) 4.1 (0.6) 9.4 (1.3) 0.02 (ϵ) 246.5 (43.6) 30.7 (1.1) 72.9 (1.3) 1.2 (0.7) 28.8 (4.0)
age 1.6 (0.3) 12.8 (2.3) 0.04 (ϵ) 564.8 (0.2k) 2.7 (0.4) 24.1 (2.5) 0.07 (ϵ) 330.9 (54.0) 2.7 (0.4) 20.8 (2.8) 0.02 (ϵ) 409.7 (91.5) 43.3 (1.0) 89.3 (0.5) 0.5 (0.3) 19.6 (1.4)

MEPS15
sex 0.6 (0.1) 8.0 (1.4) 0.01 (ϵ) N/A 1.0 (0.2) 14.7 (2.2) 0.01 (ϵ) 337.0 (0.4k) 0.9 (0.2) 11.7 (2.3) 0.01 (ϵ) 68.1 (0.2k) 6.2 (0.4) 67.9 (2.8) 7.2 (6.4) 174.2 (33.5)
age 0.4 (0.1) 16.1 (1.8) 0.03 (ϵ) N/A 0.8 (0.2) 38.3 (6.8) 0.02 (ϵ) 92.0 (0.3k) 0.7 (0.1) 29.1 (3.5) 0.05 (ϵ) N/A 6.7 (0.4) 82.1 (2.9) 3.2 (3.4) 136.0 (12.7)
race 0.7 (0.1) 9.4 (0.8) 0.02 (ϵ) N/A 1.4 (0.2) 21.1 (3.4) 0.02 (ϵ) 683.3 (0.1k) 1.0 (0.2) 14.2 (2.1) 0.02 (ϵ) 474.4 (0.4k) 6.4 (0.4) 71.0 (2.2) 13 (12) 146.2 (25.8)

MEPS16
sex 0.6 (0.1) 7.6 (1.2) 0.02 (ϵ) N/A 1.2 (0.1) 17.6 (1.9) 0.01 (ϵ) 605.2 (0.3k) 1.0 (0.1) 12.9 (1.8) 0.01 (ϵ) 256.0 (0.4k) 5.8 (0.4) 74.1 (1.5) 0.14 (ϵ) 165.3 (19.3)
age 0.3 (ϵ) 13.9 (2.0) 0.02 (ϵ) N/A 1.0 (0.2) 42.6 (7.9) 1.1 (1.1) 73.8 (0.2k) 1.0 (0.2) 38.1 (5.5) 0.03 (ϵ) 65.5 (0.2k) 6.1 (0.3) 79.3 (1.6) 1.4 (ϵ) 163.7 (12.9)
race 1.1 (0.2) 14.5 (2.1) 0.01 (ϵ) 654.4 (0.3k) 1.7 (0.2) 26.3 (3.8) 0.01 (ϵ) 509.3 (0.1k) 2.1 (0.3) 27.1 (2.7) 0.01 (ϵ) 480.4 (49.1) 6.3 (0.4) 76.9 (2.7) 0.2 (ϵ) 163.6 (20.2)

TABLE IV: Localization of layers and neurons that causally influence fairness. Neuron+i shows the index of i-th top neuron
that has positive influence on fairness once activated; Neuron−i shows the index of i-th top neuron that has negative influence
on fairness once activated; ACD+

i shows the (normalized) average causal difference of i-th top neuron with positive fairness
influence; ACD−i shows the (normalized) average causal difference of i-th top neuron with negative fairness influence.

Dataset Layer Index Layer Influence Neuron+
1 ACD+

1 Neuron+
2 ACD+

2 Neuron+
3 ACD+

3 Neuron−
1 ACD−

1 Neuron−
2 ACD−

2 Neuron−
3 ACD−

3
Census 2 9.01 N19 0.159 N3 0.150 N12 0.122 N15 0.183 N24 0.163 N14 0.102
Compas 2 20.70 N25 0.516 N28 0.419 N7 0.346 N/A N/A N/A N/A N/A N/A
German 5 1.79 N3 0.050 N1 0.013 N/A N/A N0 0.042 N/A N/A N/A N/A
Default 2 27.58 N5 0.039 N27 0.022 N19 0.014 N2 0.031 N13 0.027 N10 0.019
Heart 4 1.47 N5 0.120 N4 0.048 N0 0.044 N/A N/A N/A N/A N/A N/A
Bank 3 6.62 N0 0.495 N7 0.178 N1 0.091 N6 0.057 N11 0.014 N/A N/A
Diabetes 2 1.67 N19 0.041 N6 0.035 N5 0.031 N0 0.042 N29 0.001 N/A N/A
Students 2 4.01 N22 0.550 N24 0.442 N8 0.229 N4 0.084 N18 0.055 N28 0.026
MEPS15 2 35.44 N24 0.230 N6 0.167 N14 0.160 N/A N/A N/A N/A N/A N/A
MEPS16 2 47.46 N8 0.147 N11 0.138 N24 0.114 N30 0.006 N30 0.003 N22 0.001

TABLE V: A is accuracy, K is the average number of clusters
from test cases; A=0 is the accuracy after deactivating the
neuron with the highest negative fairness impacts; K=0 is the
average number of clusters after the deactivation; A>0 is the
accuracy after activation the neuron with the highest positive
fairness impacts; K>0 is the average number of clusters after
the activation; and TI is the amount of computation times for
localization and mitigation in seconds.

Dataset A K A=0 K=0 A>0 K>0 TI

Census 0.882 22.68 0.85 18.22 0.85 18.68 1, 538
Compas 0.976 5.19 N/A N/A 0.971 2.66 1, 226
German 1.0 5.05 0.992 4.62 0.956 3.53 559
Default 0.827 8.08 0.822 6.70 0.826 7.70 1, 230
Heart 0.96 6.91 N/A N/A 0.916 6.59 553
Bank 0.923 5.95 0.901 4.32 0.893 3.16 858
Diabetes 0.993 3.90 0.956 2.91 0.965 3.61 1, 238
Students 1.0 6.42 0.97 5.79 0.98 2.29 1, 206
MEPS15 0.898 9.35 N/A N/A 0.866 6.93 1, 348
MEPS16 0.913 7.42 0.906 6.98 0.903 6.27 1, 368

it is an open problem whether these datasets and DNN models
are sufficiently representative for fairness testing.

VIII. RELATED WORK

Fairness Testing of ML systems. THEMIS [10] presents
a causal discrimination notion where they measure the dif-
ference between the fairness metric of two subgroups by

counterfactual queries; i.e., they sample individuals with the
protected attributes set to A and compare the outcome to a
counterfactual scenario where the protected attributes are set
to B. Symbolic generation (SC) [28], [22] presents a black-box
testing that approximates the ML models with decision trees
and leverage symbolic execution over the tree structure to find
individual discrimination (ID). AEQUITAS [19] uses a two-
step approach that first uniformly at random samples instances
from the input dataset to find a discriminatory instance and
then locally perturb those instances to further generate biased
test cases. EXPGA [16] proposed a genetic algorithm (GA)
to generate ID instances in natural language processes. The
proposed technique used a prior knowledge graph to guide
the perturbation of protected attributes in the NLP tasks.
While these techniques are black-box, they potentially suffer
from the lack of local guidance during the search. ADF [17]
utilized the gradient of the loss function as guidance in
generating ID instances. The global phase explores the input
space to find diverse set of individual discrimination whereas
the local phase exploits each instance to generate many indi-
vidual discriminatory (ID) instances in their neighborhoods.
EIDIG [29] follows similar ideas to ADF, but uses different
computations of gradients. First, it uses the gradients of output
(rather than loss function) to reduce the computation cost
at each iteration. Second, it uses momentum of gradients in

global phase to avoid local optima. NEURONFAIR [18] extends
ADF and EIDIG to support unstructured data (e.g., image,
text, speech, etc.) where the protected attributes might not
be well-defined. In addition, NEURONFAIR is guided by the
DNN’s internal neuron states (e.g., the pattern of activation
and deactivation) and their activation difference. Beyond the
capability of these techniques, DICE quantifies the amounts of
discrimination, enables software developers to prioritize test
cases, and searches multiple protected attributes at one time.

Beyond the scope of this paper, a body of prior work [42],
[43], [44], [23], [45], [46] considered testing for group fair-
ness. FAIRWAY [43] mitigates biases after finding suitable
ML algorithm configurations. In doing so, they used a multi-
objective optimization (FLASH) [47]. PARFAIT-ML [45]
searches the hyperparameter space of classic ML algorithms
via a gray-box evolutionary algorithm to characterize the
magnitude of biases from the hyperparameter configuration.

Debugging of Deep Neural Network. CRADLE [33] traced
the execution graph of a DNN model over two different
deep-learning frameworks and used the differences in the
outcomes to localize what backend functions might cause a
bug. However, since CRADLE did not use causal analysis,
it showed a high rate of false positive. AUDEE [48] used
a similar approach, but it leveraged causal-testing methods.
In particular, it designed strategies to intervene in the DNN
models and tracked how the intervention affected the observed
inconsistencies. We adapted the layer localization of CRADLE
and AUDEE; but our causal localization is developed using do
logic for a meta-property (fairness). AUDEE used a simple per-
turbation of neuron values for functional correctness (i.e., any
inconsistency shows a bug) without considering the accuracy
or the severity of neuron contributions to a bug.

In-process Mitigation. A set of work considers in-process
algorithms to mitigate biases in ML predictions [49], [50],
[51]. Adversarial debiasing [49] and Prejudice remover [50]
improve fairness by adding constraints to model parameters
or the loss function. Exponentiated gradient [51] uses a meta-
learning algorithm to infer a family of classifiers that maxi-
mizes accuracy and fairness. Different than these approaches,
we develop a mitigation approach that is specialized to handle
neural networks for individual fairness. This setting allows
us to exploit the layer-based structure of NNs toward causal
reasoning and mitigation. We believe that our approach can be
extended with in-process mitigation techniques to maximize
fairness in the DNN-based decision support systems.

Formal Methods. We believe that this paper can connect to
the rich literature of formal verification and its application.
Here, we provide two examples. FAIRSQUARE [52] certifies a
fair decision-making process in probabilistic programs using
a novel verification technique called the weighted-volume-
computation algorithm. SFTREE [53] formulated the prob-
lem of inferring fair decision tree as a mixed integer linear
programming and apply constraint solvers iteratively to find
solutions.

Fairness in income, wealth, and taxation. We develop
a fairness testing and debugging approach that is uniquely
geared toward handling regression problems. Therefore, our
approach can be useful to study and address biases in income
and wealth distributions [54] among different race and gender.
Furthermore, our approach can be useful to study fairness in
taxation (e.g., vertical and horizontal equities [55], [56]). We
left further study in these directions to future work.

IX. CONCLUSION

DNN-based software solutions are increasingly being used
in socio-critical applications where a bug in their design
may lead to discriminatory behavior. In this paper, we pre-
sented DICE: an information-theoretic model to characterize
the amounts of protected information used in DNN-based
decision making. Our experiments showed that the search and
debugging algorithms, based on the quantitative landscape, are
effective in discovering and localizing fairness defects.

Acknowledgement. The authors thank the anonymous ICSE
reviewers for their time and invaluable feedback to improve
this paper. This research was partially supported by NSF under
grant DGE-2043250 and UTEP College of Engineering under
startup package.

REFERENCES

[1] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016, http://www.deeplearningbook.org.

[2] S. Ranchordás and L. Scarcella, “Automated government for vulnerable
citizens: Intermediating rights,” SSRN Electronic Journal, 2021.

[3] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck
method,” arXiv preprint physics/0004057, 2000.

[4] S. M. Julia Angwin, Jeff Larson and L. Kirchne,
“Machine bias,” https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing, 2021, online.

[5] D. A. Elyounes, “” computer says no!”: The impact of automation on
the discretionary power of public officers,” Vand. J. Ent. & Tech. L.,
vol. 23, p. 451, 2020.

[6] N. Escher and N. Banovic, “Exposing error in poverty management
technology: A method for auditing government benefits screening tools,”
Proc. ACM Hum. Comput. Interact., vol. 4, no. CSCW, pp. 064:1–
064:20, 2020. [Online]. Available: https://doi.org/10.1145/3392874

[7] J. Slemrod, “Group equity and implicit discrimination in tax systems,”
National Tax Journal, vol. 75, no. 1, pp. 201–224, 2022.

[8] D. A. Brown, “The IRS is targeting the poorest
americans,” August 2021, [Online; posted 27-July-2021].
[Online]. Available: https://www.theatlantic.com/ideas/archive/2021/07/
how-race-plays-tax-policing/619570/

[9] C. Thomas and A. Pontón-Núñez, “Automating judicial discretion:
How algorithmic risk assessments in pretrial adjudications violate equal
protection rights on the basis of race,” Minnesota Journal of Law &
Inequality, vol. 40, no. 2, p. 371, 2022.

[10] R. Angell, B. Johnson, Y. Brun, and A. Meliou, “Themis: Automatically
testing software for discrimination,” in Proceedings of the 2018 26th
ACM Joint meeting on european software engineering conference and
symposium on the foundations of software engineering, 2018, pp. 871–
875.

[11] S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: testing software
for discrimination,” in FSE, 2017, pp. 498–510.

[12] A. Aggarwal, P. Lohia, S. Nagar, K. Dey, and D. Saha, “Black box
fairness testing of machine learning models,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019, pp.
625–635.

http://www.deeplearningbook.org
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://doi.org/10.1145/3392874
https://www.theatlantic.com/ideas/archive/2021/07/how-race-plays-tax-policing/619570/
https://www.theatlantic.com/ideas/archive/2021/07/how-race-plays-tax-policing/619570/

[13] A. Sharma and H. Wehrheim, “Automatic fairness testing of machine
learning models,” in IFIP International Conference on Testing Software
and Systems. Springer, 2020, pp. 255–271.

[14] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in supervised
learning,” in NIPS, 2016.

[15] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fairness
through awareness,” in Proceedings of the 3rd innovations in theoretical
computer science conference, 2012, pp. 214–226.

[16] M. Fan, W. Wei, W. Jin, Z. Yang, and T. Liu, “Explanation-guided
fairness testing through genetic algorithm,” in Proceedings of the 44th
International Conference on Software Engineering, ser. ICSE ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
871–882. [Online]. Available: https://doi.org/10.1145/3510003.3510137

[17] P. Zhang, J. Wang, J. Sun, G. Dong, X. Wang, X. Wang, J. S. Dong,
and T. Dai, “White-box fairness testing through adversarial sampling,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, 2020, pp. 949–960.

[18] H. Zheng, Z. Chen, T. Du, X. Zhang, Y. Cheng, S. Ti, J. Wang, Y. Yu, and
J. Chen, “Neuronfair: Interpretable white-box fairness testing through
biased neuron identification,” in 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE), 2022, pp. 1519–1531.

[19] S. Udeshi, P. Arora, and S. Chattopadhyay, “Automated directed fairness
testing,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, 2018, pp. 98–108.

[20] M. Glymour, J. Pearl, and N. P. Jewell, Causal inference in statistics:
A primer. John Wiley & Sons, 2016.

[21] Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen, “Audee: Au-
tomated testing for deep learning frameworks,” in 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2020, pp. 486–498.

[22] A. Agarwal, P. Lohia, S. Nagar, K. Dey, and D. Saha, “Automated
test generation to detect individual discrimination in ai models,” arXiv
preprint arXiv:1809.03260, 2018.

[23] J. Chakraborty, S. Majumder, and T. Menzies, “Bias in machine learning
software: Why? how? what to do?” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2021.
New York, NY, USA: Association for Computing Machinery, 2021, p.
429–440. [Online]. Available: https://doi.org/10.1145/3468264.3468537

[24] A. Rényi et al., “On measures of entropy and information,” in Proceed-
ings of the fourth Berkeley symposium on mathematical statistics and
probability, vol. 1, no. 547-561. Berkeley, California, USA, 1961.

[25] G. Smith, “On the foundations of quantitative information flow,” in Foun-
dations of Software Science and Computational Structures, L. de Alfaro,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 288–302.

[26] M. Backes, B. Köpf, and A. Rybalchenko, “Automatic discovery and
quantification of information leaks,” in 2009 30th IEEE Symposium on
Security and Privacy. IEEE, 2009, pp. 141–153.

[27] Y. Noller and S. Tizpaz-Niari, “Qfuzz: Quantitative fuzzing for side
channels,” ser. ISSTA 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 257–269. [Online]. Available:
https://doi.org/10.1145/3460319.3464817

[28] A. Aggarwal, P. Lohia, S. Nagar, K. Dey, and D. Saha, “Black
box fairness testing of machine learning models,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2019, 2019, p. 625–635.
[Online]. Available: https://doi.org/10.1145/3338906.3338937

[29] L. Zhang, Y. Zhang, and M. Zhang, “Efficient white-box fairness
testing through gradient search,” in Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2021, 2021, p. 103–114. [Online]. Available:
https://doi.org/10.1145/3460319.3464820

[30] J. Pearl, Causality. Cambridge university press, 2009.
[31] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].

Available: https://archive.ics.uci.edu/ml/datasets/census+income
[32] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for

large scale optimization,” Mathematical programming, vol. 45, no. 1,
pp. 503–528, 1989.

[33] H. V. Pham, T. Lutellier, W. Qi, and L. Tan, “Cradle: cross-backend
validation to detect and localize bugs in deep learning libraries,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 1027–1038.

[34] ProPublica, “Compas software ananlysis,” https://github.com/propublica/
compas-analysis, 2021, online.

[35] “UCI:statlog (german credit data) data set,” 2000. [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

[36] “UCI:default of credit card clients data set,” 2009. [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

[37] “UCI:heart disease data set,” 2001. [Online]. Available: https:
//archive.ics.uci.edu/ml/datasets/Heart+Disease

[38] “Bank marketing uci,” 2017. [Online]. Available: https://archive.ics.uci.
edu/ml/datasets/bank+marketing

[39] “UCI: Diabetes patient records,” 1994. [Online]. Available: https:
//archive.ics.uci.edu/ml/datasets/diabetes

[40] “Student performance data set,” 2014. [Online]. Available: https:
//archive.ics.uci.edu/ml/datasets/Student+Performance

[41] “Medical expenditure panel survey,” 2014. [Online]. Available:
https://meps.ahrq.gov/mepsweb/

[42] R. K. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde, K. Kannan,
P. Lohia, J. Martino, S. Mehta, A. Mojsilović et al., “AI fairness 360:
An extensible toolkit for detecting and mitigating algorithmic bias,” IBM
Journal of Research and Development, vol. 63, no. 4/5, pp. 4–1, 2019.

[43] J. Chakraborty, S. Majumder, Z. Yu, and T. Menzies, “Fairway: a way to
build fair ml software,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020, pp. 654–665.

[44] J. M. Zhang and M. Harman, “”ignorance and prejudice” in
software fairness,” in 43rd IEEE/ACM International Conference
on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May
2021. IEEE, 2021, pp. 1436–1447. [Online]. Available: https:
//doi.org/10.1109/ICSE43902.2021.00129

[45] S. Tizpaz-Niari, A. Kumar, G. Tan, and A. Trivedi, “Fairness-aware
configuration of machine learning libraries,” in 44th IEEE/ACM
44th International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022. IEEE, 2022, pp. 909–920.
[Online]. Available: https://doi.org/10.1145/3510003.3510202

[46] Z. Chen, J. M. Zhang, F. Sarro, and M. Harman, “Maat: A novel
ensemble approach to addressing fairness and performance bugs for
machine learning software,” ser. ESEC/FSE 2022, 2022, p. 1122–1134.
[Online]. Available: https://doi.org/10.1145/3540250.3549093

[47] V. Nair, Z. Yu, T. Menzies, N. Siegmund, and S. Apel, “Finding faster
configurations using flash,” IEEE Transactions on Software Engineering,
vol. 46, no. 7, pp. 794–811, 2020.

[48] Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen, “Audee: Au-
tomated testing for deep learning frameworks,” in 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2020, pp. 486–498.

[49] B. H. Zhang, B. Lemoine, and M. Mitchell, “Mitigating unwanted
biases with adversarial learning,” in Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society, 2018, pp. 335–340.

[50] F. Kamiran, A. Karim, and X. Zhang, “Decision theory for
discrimination-aware classification,” in 2012 IEEE 12th International
Conference on Data Mining, 2012, pp. 924–929.

[51] A. Agarwal, A. Beygelzimer, M. Dudı́k, J. Langford, and H. Wallach, “A
reductions approach to fair classification,” in International Conference
on Machine Learning. PMLR, 2018, pp. 60–69.

[52] A. Albarghouthi, L. D’Antoni, S. Drews, and A. V. Nori, “Fairsquare:
Probabilistic verification of program fairness,” no. OOPSLA, 2017.
[Online]. Available: https://doi.org/10.1145/3133904

[53] J. Wang, Y. Li, and C. Wang, “Synthesizing fair decision trees via
iterative constraint solving,” in Computer Aided Verification: 34th In-
ternational Conference, CAV 2022, Haifa, Israel, August 7–10, 2022,
Proceedings, Part II. Springer, 2022, pp. 364–385.

[54] T. Piketty and E. Saez, “Income inequality in the united states, 1913–
1998,” The Quarterly journal of economics, vol. 118, no. 1, pp. 1–41,
2003.

[55] E. Black, H. Elzayn, A. Chouldechova, J. Goldin, and D. Ho,
“Algorithmic fairness and vertical equity: Income fairness with irs tax
audit models,” in 2022 ACM Conference on Fairness, Accountability,
and Transparency, ser. FAccT ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1479–1503. [Online]. Available:
https://doi.org/10.1145/3531146.3533204

[56] S. Tizpaz-Niari, V. Monjezi, M. Wagner, S. Darian, K. Reed, and
A. Trivedi, “Metamorphic testing and debugging of tax preparation
software,” 2023. [Online]. Available: https://arxiv.org/abs/2205.04998

https://doi.org/10.1145/3510003.3510137
https://doi.org/10.1145/3468264.3468537
https://doi.org/10.1145/3460319.3464817
https://doi.org/10.1145/3338906.3338937
https://doi.org/10.1145/3460319.3464820
https://archive.ics.uci.edu/ml/datasets/census+income
https://github.com/propublica/compas-analysis
https://github.com/propublica/compas-analysis
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://archive.ics.uci.edu/ml/datasets/diabetes
https://archive.ics.uci.edu/ml/datasets/diabetes
https://archive.ics.uci.edu/ml/datasets/Student+Performance
https://archive.ics.uci.edu/ml/datasets/Student+Performance
https://meps.ahrq.gov/mepsweb/
https://doi.org/10.1109/ICSE43902.2021.00129
https://doi.org/10.1109/ICSE43902.2021.00129
https://doi.org/10.1145/3510003.3510202
https://doi.org/10.1145/3540250.3549093
https://doi.org/10.1145/3133904
https://doi.org/10.1145/3531146.3533204
https://arxiv.org/abs/2205.04998

	Introduction
	Preliminaries
	Overview
	Problem Statement
	Approach
	Experiments
	Characterizing QID via Search (RQ1)
	Individual Discriminatory Instances (RQ2)
	Causal Debugging of DNNs for Fairness (RQ3)

	Discussion
	Related Work
	Conclusion
	References

