Weekly Calendar (Subject to Change)

Code Assignments are due to 5:00 pm every Friday. Papers Assignments are due 12 pm before each class.

	Topic	Readings/Watching	Assignments	Notes
Week 1	Introduction, Syllabus, Introduction to Machine Learning, Classification Model: K-Nearest Neighbors.	(ML + KNN)		- Install Jupyter - Overview Python - Overview Numpy
Week 2	Basic ML algorithm: Support Vector Machines (SVM), Decision Trees, and Random Forests	Intro to fundamental/classical ML algorithms - Jupyter Notebook #2 (SVM + DT + RF)	Code Assignment #1	
Week 3	Linear Classification, Optimization, Stochastic Gradient Descent	Jupyter Notebook #3 (Linear Models) Jupyter Notebook #4 (Optimization Technique)		
Week 4	Backpropagation	Jupyter Notebook #5 (Optimization Technique)	Code Assignment #2	
Week 5	Introduction to Deep Neural Network	Jupyter Notebook #6 (Neural Network Model)	Code Assignment #3	
Week 6	Adversarial Machine Learning	Monday: - Intriguing properties of neural networks - Explaining and Harnessing Adversarial Examples Wednesday: - Towards Evaluating the Robustness of Neural Networks - Transferability in Machine Learning See Also: - Adversarial Learning - Generative Adversarial Networks - Generating Adversarial Examples with Adversarial Networks	Monday: Papers Assignment 1 Wednesday: Papers Assignment 2	- How to Read a Paper - Efficient Reading - How to Give a Great Talk - How to Write a Great Research Paper - How to Give a Great Research Talk
Week 7	Data poisoning, Defenses and detection: challenges	Monday (Data Poisoning): - Poisoning Attacks against Support Vector Machines - Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks Wednesday (Detection Challenges): - Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods - Towards Deep Learning Models Resistant to Adversarial Attacks See Also: - Targeted Backdoor Attacks on DNN	Monday: Papers Assignment 3 Wednesday: Papers Assignment 4 Code Assignment #4	
Week 8	Data Privacy and Reconstruction Attack	Monday (Data Privacy): - The Secret Sharer Wednesday (Privacy Attack) - Membership inference attacks against MLs. See Also: - On Taxis and Rainbows - Some Useful Probability Facts - Reconstruction Attacks (Notes) - The Algorithmic Foundations of Differential Privacy (Section 8.1, overview Section 1)	Monday: Papers Assignment 5 Wednesday: Papers Assignment 6	

Week 9	Differential Dates and	Monday:	Duciant	
week 9	Differential Privacy, a	- The Algorithmic Foundations of Differential Privacy	Project Summary	
	firm mechanism for	(Section 2, Section 3.1 and 3.2)	- Title, Group	
	private computations	- The Complexity of Differential Privacy	- 2-pages	
		(Section 1.4-1.6)	Summary.	
		Wednesday:	(Due to	
		- The Algorithmic Foundations of Differential Privacy	Friday 12	
		(Section 3.3) - The Complexity of Differential Privacy	March)	
		(Section 2)	Code	
		See Also:	Assignment #5	
		- <u>Lunchtime for Differential Privacy</u>		
		- A Firm Foundation for Private Data Analysis		
		- <u>Data Privacy Foundations and Applications</u>		
Week 10	Algorithmic Fairness	Monday:	Monday:	
		- 50 Years of Test (Un)fairness: Lessons for ML	Paper	
		- Fairway: a way to build fair ML software	Assignment 7	
		Wednesday:	Wednesday:	
		- Fairness through Awarness - Equality of Opportunity in Supervised Learning	Papers Assignment 8	
		See Also:	7 issignment o	
		- <u>Fairness and ML</u> (Sections 1 & 2)		
Week 11	Council Information	`	Mondo	
week 11	Causal Inferences	Monday: - Pearl's Book (Ch 2)	Monday: Paper	
		- Pearl's Book (Ch 2)	Assignment 9	
		Wednesday:	Wednesday:	
		Causality Paper #1	Paper	
		Causality Paper #2	Assignment 10	
		See Also		
		- WebPPL (Probabilistic Programming Language)		
Week 12	White-box and Gray-box		Monday:	
	methods for testing ML	- <u>DeepXplore</u>	Papers	
	Models	- <u>DeepTest</u> Wednesday (Bugs in DNN):	Assignment 11 Wednesday:	
		- Taxonomy of Real Faults in Deep Learning Systems	Papers	
		- A Comprehensive Study on Challenges in Deploying	Assignment 12	
		Deep Learning Based Software		
Week 13	ML-assisted Software	Monday:	Monday:	
Week 13	Testing	- Fuzzing: Hack, Art, and Science	Paper	
	resting	- Fuzzing: Challenges and Reflections	Assignment 13	
		Wednesday:	Wednesday:	
		- <u>Automatic analysis of malware behavior using machine</u>	Papers	
		<u>learning</u> - On Training Robust PDF Malware Classifiers	Assignment 14	
		- On Training Robust 1 Dr. Maiware Classifiers		
Week 14	ML-assisted Debugging,	Monday:		
		- <u>Differential Performance Debugging with Discriminant</u>		
		Regression Trees		
		- Detecting and Understanding Real-World Differential Performance Bugs in Machine Learning Libraries		
	Project Presentation	Wednesday:		
		Final Project Presentations (TBA)		
Week 15	Project Presentations	Final Project Presentations (TBA)	Final Project	
			Submission	